The functional analysis of transiently upregulated miR-101 suggests a “braking” regulatory mechanism during myogenesis

Abstract

Skeletal muscle differentiation is a highly coordinated process that involves many cellular signaling pathways and microRNAs (miRNAs). A group of muscle-specific miRNAs has been reported to promote myogenesis by suppressing key signaling pathways for cell growth. However, the functional role and regulatory mechanism of most non-muscle-specific miRNAs with stage-specific changes during differentiation are largely unclear. Here, we describe the functional characterization of miR-101a/b, a pair of non-muscle-specific miRNAs that show the largest change among a group of transiently upregulated miRNAs during myogenesis in C2C12 cells. The overexpression of miR-101a/b inhibits myoblast differentiation by suppressing the p38/MAPK, Interferon Gamma, and Wnt pathways and enhancing the C/EBP pathway. Mef2a, a key protein in the p38/MAPK pathway, was identified as a direct target of miR-101a/b. Interestingly, we found that the long non-coding RNA (lncRNA) Malat1, which promotes muscle differentiation, interacts with miR-101a/b, and this interaction competes with Mef2a mRNA to relieve the inhibition of the p38/MAPK pathway during myogenesis. These results uncovered a “braking” role in differentiation of transiently upregulated miRNAs and provided new insights into the competing endogenous RNA (ceRNA) regulatory mechanism in myoblast differentiation and myogenesis.

This is a preview of subscription content, access via your institution.

References

  1. Abraham, S.T. (2016). A role for the Wnt3a/β-catenin signaling pathway in the myogenic program of C2C12 cells. In Vitro Cell Dev Biol Anim 52, 935–941.

    CAS  Article  Google Scholar 

  2. Callis, T.E., Deng, Z., Chen, J.F., and Wang, D.Z. (2008). Muscling through the microRNA world. Exp Biol Med (Maywood) 233, 131–138.

    CAS  Article  Google Scholar 

  3. Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A., and Bozzoni, I. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369.

    CAS  Article  Google Scholar 

  4. Elia, L., Contu, R., Quintavalle, M., Varrone, F., Chimenti, C., Russo, M. A., Cimino, V., De Marinis, L., Frustaci, A., Catalucci, D., et al. (2009). Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120, 2377–2385.

    CAS  Article  Google Scholar 

  5. Fan, Y., Shen, B., Tan, M., Mu, X., Qin, Y., Zhang, F., and Liu, Y. (2014). TGF-β-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin Cancer Res 20, 1531–1541.

    CAS  Article  Google Scholar 

  6. Guicheux, J., Lemonnier, J., Ghayor, C., Suzuki, A., Palmer, G., and Caverzasio, J. (2003). Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res 18, 2060–2068.

    CAS  Article  Google Scholar 

  7. Han, X., Yang, F., Cao, H., and Liang, Z. (2015). Malat1 regulates serum response factor through miR-133 as a competing endogenous RNA in myogenesis. FASEB J 29, 3054–3064.

    CAS  Article  Google Scholar 

  8. Hirata, H., Hinoda, Y., Shahryari, V., Deng, G., Nakajima, K., Tabatabai, Z. L., Ishii, N., and Dahiya, R. (2015). Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res 75, 1322–1331.

    CAS  Article  Google Scholar 

  9. Huang, M.B., Xu, H., Xie, S.J., Zhou, H., and Qu, L.H. (2011). Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS ONE 6, e29173.

    CAS  Article  Google Scholar 

  10. Humphreys, D.T., Westman, B.J., Martin, D.I.K., and Preiss, T. (2005). MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 102, 16961–16966.

    CAS  Article  Google Scholar 

  11. Kallen, A.N., Zhou, X.B., Xu, J., Qiao, C., Ma, J., Yan, L., Lu, L., Liu, C., Yi, J.S., Zhang, H., et al. (2013). The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 52, 101–112.

    CAS  Article  Google Scholar 

  12. Lamon, S., Zacharewicz, E., Butchart, L.C., Orellana, L., Mikovic, J., Grounds, M.D., and Russell, A.P. (2017). MicroRNA expression patterns in post-natal mouse skeletal muscle development. BMC Genomics 18, 52.

    Article  Google Scholar 

  13. Li, J.H., Liu, S., Zhou, H., Qu, L.H., and Yang, J.H. (2014). starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucl Acids Res 42, D92–D97.

    CAS  Article  Google Scholar 

  14. Liao, K., Lin, Y., Gao, W., Xiao, Z., Medina, R., Dmitriev, P., Cui, J., Zhuang, Z., Zhao, X., Qiu, Y., et al. (2019). Blocking lncRNA MALAT1/miR-199a/ZHX1 axis inhibits glioblastoma proliferation and progression. Mol Ther Nucleic Acids 18, 388–399.

    CAS  Article  Google Scholar 

  15. Liu, S., Li, B., Liang, Q., Liu, A., Qu, L., and Yang, J. (2020). Classification and function of RNA-protein interactions. WIREs RNA 11.

  16. Lluís, F., Perdiguero, E., Nebreda, A.R., and Muñoz-Cánoves, P. (2006). Regulation of skeletal muscle gene expression by p38 MAP kinases. Trends Cell Biol 16, 36–44.

    Article  Google Scholar 

  17. Luan, W., Li, L., Shi, Y., Bu, X., Xia, Y., Wang, J., Djangmah, H.S., Liu, X., You, Y., and Xu, B. (2016). Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22. Oncotarget 7, 63901–63912.

    Article  Google Scholar 

  18. Marchildon, F., Lala, N., Li, G., St-Louis, C., Lamothe, D., Keller, C., and Wiper-Bergeron, N. (2012). CCAAT/enhancer binding protein beta is expressed in satellite cells and controls myogenesis. Stem Cells 30, 2619–2630.

    CAS  Article  Google Scholar 

  19. McCarthy, J.J., and Esser, K.A. (2007). MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 102, 306–313.

    CAS  Article  Google Scholar 

  20. Miller, J.B. (1990). Myogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, MyoD1, and myogenin.. J Cell Biol 111, 1149–1159.

    CAS  Article  Google Scholar 

  21. Nusse, R. (2008). Wnt signaling and stem cell control. Cell Res 18, 523–527.

    CAS  Article  Google Scholar 

  22. Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005). Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309, 1573–1576.

    CAS  Article  Google Scholar 

  23. Rinkenbaugh, A.L., and Baldwin, A.S. (2016). The NF-κB pathway and cancer stem cells. Cells 5, 16.

    Article  Google Scholar 

  24. Saw, P.E., Xu, X., Chen, J., and Song, E.W. (2020). Non-coding RNAs: the new central dogma of cancer biology. Sci China Life Sci, doi: https://doi.org/10.1007/s11427-020-1700-9.

  25. Small, E.M., O’Rourke, J.R., Moresi, V., Sutherland, L.B., McAnally, J., Gerard, R.D., Richardson, J.A., and Olson, E.N. (2010). Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc Natl Acad Sci USA 107, 4218–4223.

    CAS  Article  Google Scholar 

  26. Song, T. F., Huang, L. W., Yuan, Y., Wang, H. Q., He, H. P., Ma, W. J., Huo, L. H., Zhou, H., Wang, N., and Zhang, T.C. (2018). LncRNA MALAT1 regulates smooth muscle cell phenotype switch via activation of autophagy. Oncotarget 9, 4411–4426.

    Article  Google Scholar 

  27. Sun, Q., Hao, Q., and Prasanth, K.V. (2018). Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genets 34, 142–157.

    CAS  Article  Google Scholar 

  28. van Rooij, E., Liu, N., and Olson, E.N. (2008). MicroRNAs flex their muscles. Trends Genets 24, 159–166.

    CAS  Article  Google Scholar 

  29. van Rooij, E., Quiat, D., Johnson, B.A., Sutherland, L.B., Qi, X., Richardson, J.A., Kelm Jr., R.J., and Olson, E.N. (2009). A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17, 662–673.

    CAS  Article  Google Scholar 

  30. Wang, L.Q., Yu, P., Li, B., Guo, Y.H., Liang, Z.R., Zheng, L.L., Yang, J.H., Xu, H., Liu, S., Zheng, L.S., et al. (2018). miR-372 and miR-373 enhance the stemness of colorectal cancer cells by repressing differentiation signaling pathways. Mol Oncol 12, 1949–1964.

    CAS  Article  Google Scholar 

  31. Wang, X., Li, M., Wang, Z., Han, S., Tang, X., Ge, Y., Zhou, L., Zhou, C., Yuan, Q., and Yang, M. (2015). Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. J Biol Chem 290, 3925–3935.

    CAS  Article  Google Scholar 

  32. Wang, Y., Zhang, Y., Yang, T., Zhao, W., Wang, N., Li, P., Zeng, X., and Zhang, W. (2017) Long non-coding RNA MALAT1 for promoting metastasis and proliferation by acting as a ceRNA of miR-144-3p in osteosarcoma cells. Oncotarget 8, 59417–59434.

    Article  Google Scholar 

  33. Xie, S.J., Zhang, Y., Qu, L.H., and Xu, H. (2013). A Helm model for microRNA regulation in cell fate decision and conversion. Sci China Life Sci 56, 897–906.

    CAS  Article  Google Scholar 

  34. Xie, S.J., Li, J.H., Chen, H.F., Tan, Y.Y., Liu, S.R., Zhang, Y., Xu, H., Yang, J.H., Liu, S., Zheng, L.L., et al. (2018). Inhibition of the JNK/MAPK signaling pathway by myogenesis-associated miRNAs is required for skeletal muscle development. Cell Death Differ 25, 1581–1597.

    CAS  Article  Google Scholar 

  35. Xu, H., Xu, S.J., Xie, S.J., Zhang, Y., Yang, J.H., Zhang, W.Q., Zheng, M. N., Zhou, H., and Qu, L.H. (2019). MicroRNA-122 supports robust innate immunity in hepatocytes by targeting the RTKs/STAT3 signaling pathway. eLife 8, e41159.

    Article  Google Scholar 

  36. Xue, Y., Chen, R., Qu, L., and Cao, X. (2020). Noncoding RNA: from dark matter to bright star. Sci China Life Sci 63, 463–468.

    Article  Google Scholar 

  37. Yang, L., Lin, C., Liu, W., Zhang, J., Ohgi, K.A., Grinstein, J.D., Dorrestein, P.C., and Rosenfeld, M.G. (2011). ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147, 773–788.

    CAS  Article  Google Scholar 

  38. Yu, F., Lu, Z., Cai, J., Huang, K., Chen, B., Li, G., Dong, P., and Zheng, J. (2015). MALAT1 functions as a competing endogenous RNA to mediate Rac1 expression by sequestering miR-101b in liver fibrosis. Cell Cycle 14, 3885–3896.

    CAS  Article  Google Scholar 

  39. Zhang, X., Zuo, X., Yang, B., Li, Z., Xue, Y., Zhou, Y., Huang, J., Zhao, X., Zhou, J., Yan, Y., et al. (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158, 607–619.

    CAS  Article  Google Scholar 

  40. Zhang, Y., and Li, Y.K. (2013). Regulation of innate receptor pathways by microRNAs. Sci China Life Sci 56, 13–18.

    PubMed  Google Scholar 

  41. Zhao, M., New, L., Kravchenko, V.V., Kato, Y., Gram, H., di Padova, F., Olson, E.N., Ulevitch, R.J., and Han, J. (1999). Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 19, 21–30.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Qiao-Juan Huang and Xiao-Hong Chen for their technical assistance. This work was supported by the National Natural Science Foundation of China (31970604, 31701116, 31770879, 31771459, 31900903, 81870449, 81974436), the Major Research Plan of the National Natural Science Foundation of China (91940000), the Fundamental Research Funds for the Central Universities (20lgpy112), and Science and Technology New Star in ZhuJiang Guangzhou City (201806010151).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qi Zhang or Lianghu Qu.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Xie, S., Chen, H. et al. The functional analysis of transiently upregulated miR-101 suggests a “braking” regulatory mechanism during myogenesis. Sci. China Life Sci. (2021). https://doi.org/10.1007/s11427-020-1856-5

Download citation

  • miR-101a/b
  • p38/MAPK signaling pathway
  • Mef2a
  • Malat1
  • skeletal muscle differentiation