A chromosome-level genome assembly of the wild rice Oryza rufipogon facilitates tracing the origins of Asian cultivated rice

Abstract

Oryza rufipogon Griff. is a wild progenitor of the Asian cultivated rice Oryza sativa. To better understand the genomic diversity of the wild rice, high-quality reference genomes of O. rufipogon populations are needed, which also facilitate utilization of the wild genetic resources in rice breeding. In this study, we generated a chromosome-level genome assembly of O. rufipogon using a combination of short-read sequencing, single-molecule sequencing, BioNano and Hi-C platforms. The genome sequence (399.8 Mb) was assembled into 46 scaffolds on the 12 chromosomes, with contig N50 and scaffold N50 of 13.2 Mb and 20.3 Mb, respectively. The genome contains 36,520 protein-coding genes, and 49.37% of the genome consists of repetitive elements. The genome has strong synteny with those of the O. sativa subspecies indica and japonica, but containing some large structural variations. Evolutionary analysis unveiled the polyphyletic origins of O. sativa, in which the japonica and indica genome formations involved different divergent O. rufipogon (including O. nivara) lineages, accompanied by introgression of genomic regions between japonica and indica. This high-quality reference genome provides insight on the genome evolution of the wild rice and the origins of the O. sativa subspecies, and valuable information for basic research and rice breeding.

References

  1. Alexander, D.H., Novembre, J., and Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19, 1655–1664.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Atwell, B.J., Wang, H., and Scafaro, A.P. (2014). Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? Plant Sci 215–216, 48–58.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  3. Ammiraju, J.S., Luo, M., Goicoechea, J.L., Wang, W., Kudrna, D., Mueller, C., Talag, J., Kim, H.R., Sisneros, N.B., Blackmon, B., et al. (2006). The Oryza bacterial artificial chromosome library resource: Construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16, 140–147.

    PubMed  PubMed Central  Article  Google Scholar 

  4. Bao, W., Kojima, K.K., and Kohany, O. (2015). Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6, 11.

    PubMed  PubMed Central  Article  Google Scholar 

  5. Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–580.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Cai, Z., Zhou, L., Ren, N.N., Xu, X., Liu, R., Huang, L., Zheng, X.M., Meng, Q.L., Du, Y.S., Wang, M.X., et al. (2019). Parallel speciation of wild rice associated with habitat shifts. Mol Biol Evol 36, 875–889.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Campbell, M.S., Holt, C., Moore, B., and Yandell, M. (2014). Genome annotation and curation using MAKER and MAKER-P. Curr Protoc Bioinf 48, 4–11.

    Article  Google Scholar 

  8. Chen, J., Huang, Q., Gao, D., Wang, J., Lang, Y., Liu, T., Li, B., Bai, Z., Luis Goicoechea, J., Liang, C., et al. (2013). Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4, 1595.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Choi, J.Y., Platts, A.E., Fuller, D.Q., Hsing, Y.I., Wing, R.A., and Purugganan, M.D. (2017). The rice paradox: multiple origins but single domestication in Asian rice. Mol Biol Evol 34, 969–979.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Delcher, A.L., Phillippy, A., Carlton, J., and Salzberg, S.L. (2002). Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30, 2478–2483.

    PubMed  PubMed Central  Article  Google Scholar 

  11. Du, H., and Liang, C. (2019). Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads. Nat Commun 10, 5360.

    PubMed  PubMed Central  Article  Google Scholar 

  12. Du, H., Yu, Y., Ma, Y., Gao, Q., Cao, Y., Chen, Z., Ma, B., Qi, M., Li, Y., Zhao, X., et al. (2017). Sequencing and de novo assembly of a near complete indica rice genome. Nat Commun 8, 15324.

    PubMed  PubMed Central  Article  Google Scholar 

  13. Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., et al. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Durand, N.C., Robinson, J.T., Shamim, M.S., Machol, I., Mesirov, J.P., Lander, E.S., and Aiden, E.L. (2016). Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst 3, 99–101.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Feltus, F.A., Wan, J., Schulze, S.R., Estill, J.C., Jiang, N., and Paterson, A. H. (2004). An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14, 1812–1819.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Gao, L., Schaal, B.A., Zhang, C., Jia, J., and Dong, Y. (2002). Assessment of population genetic structure in common wild rice Oryza rufipogon Griff. using microsatellite and allozyme markers. Theor Appl Genet 106, 173–180.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Gross, B.L., and Zhao, Z. (2014). Archaeological and genetic insights into the origins of domesticated rice. Proc Natl Acad Sci USA 111, 6190–6197.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. He, Z., Zhai, W., Wen, H., Tang, T., Wang, Y., Lu, X., Greenberg, A.J., Hudson, R.R., Wu, C.I., and Shi, S. (2011). Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet 7, e1002100.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Huang, X., Kurata, N., Wei, X., Wang, Z.X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., Li, W., et al. (2012). A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Jin, J., Huang, W., Gao, J.P., Yang, J., Shi, M., Zhu, M.Z., Luo, D., and Lin, H.X. (2008). Genetic control of rice plant architecture under domestication. Nat Genet 40, 1365–1369.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Khush, G.S. (1997). Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35, 25–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., and Phillippy, A.M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27, 722–736.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33, 1870–1874.

    CAS  Google Scholar 

  25. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Li, C., Zhou, A., and Sang, T. (2006). Rice domestication by reducing shattering. Science 311, 1936–1939.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595.

    PubMed  PubMed Central  Article  Google Scholar 

  28. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079.

    PubMed  PubMed Central  Article  Google Scholar 

  29. Li, L., Stoeckert, C.J., and Roos, D.S. (2003). OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13, 2178–2189.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Li, W., Li, K., Huang, Y., Shi, C., Hu, W.S., Zhang, Y., Zhang, Q.J., Xia, E. H., Hutang, G.R., Zhu, X.G., et al. (2020). SMRT sequencing of the Oryza rufipogon genome reveals the genomic basis of rice adaptation. Commun Biol 3, 167.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Liang, C., Mao, L., Ware, D., and Stein, L. (2009). Evidence-based gene predictions in plant genomes. Genome Res 19, 1912–1923.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Liu, B., Shi, Y., Yuan, J., Hu, X., Zhang, H., Li, N., Li, Z., Chen, Y., Mu, D., and Fan, W. (2013). Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome project. arXiv 1308, 2012.

    Google Scholar 

  33. Liu, R., Zheng, X.M., Zhou, L., Zhou, H.F., and Ge, S. (2015). Population genetic structure of Oryza rufipogon and Oryza nivara: implications for the origin of O. nivara. Mol Ecol 24, 5211–5228.

    PubMed  Article  PubMed Central  Google Scholar 

  34. Long, Y., Zhao, L., Niu, B., Su, J., Wu, H., Chen, Y., Zhang, Q., Guo, J., Zhuang, C., Mei, M., et al. (2008). Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA 105, 18871–18876.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Löytynoja, A., and Goldman, N. (2005). An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci USA 102, 10557–10562.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  36. Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., et al. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 2047.

    Article  Google Scholar 

  37. Marathi, B., Ramos, J., Hechanova, S.L., Oane, R.H., and Jena, K.K. (2015). SNP genotyping and characterization of pistil traits revealing a distinct phylogenetic relationship among the species of Oryza. Euphytica 201, 131–148.

    Article  Google Scholar 

  38. Marçais, G., and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297–1303.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. McNally, K.L., Childs, K.L., Bohnert, R., Davidson, R.M., Zhao, K., Ulat, V.J., Zeller, G., Clark, R.M., Hoen, D.R., Bureau, T.E., et al. (2009). Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106, 12273–12278.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. Molina, J., Sikora, M., Garud, N., Flowers, J.M., Rubinstein, S., Reynolds, A., Huang, P., Jackson, S., Schaal, B.A., Bustamante, C.D., et al. (2011). Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA 108, 8351–8356.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. Nattestad, M., and Schatz, M.C. (2016). Assemblytics: a web analytics tool for the detection of variants from an assembly. Bioinformatics 32, 3021–3023.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32, 268–274.

    CAS  Article  Google Scholar 

  44. Oka, H.I. (1988). Origin of cultivated rice. Amsterdam: Elsevier.

    Google Scholar 

  45. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81, 559–575.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Ranz, J., and Clifton, B. (2019). Characterization and evolutionary dynamics of complex regions in eukaryotic genomes. Sci China Life Sci 62, 467–488.

    PubMed  Article  PubMed Central  Google Scholar 

  47. Reuscher, S., Furuta, T., Bessho-Uehara, K., Cosi, M., Jena, K.K., Toyoda, A., Fujiyama, A., Kurata, N., and Ashikari, M. (2018). Assembling the genome of the African wild rice Oryza longistaminata by exploiting synteny in closely related Oryza species. Commun Biol 1, 162.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. Rice Chromosomes 11 and 12 Sequencing Consortia. (2005). The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol 3, 20.

    Article  CAS  Google Scholar 

  49. Sang, T., and Ge, S. (2007). Genetics and phylogenetics of rice domestication. Curr Opin Genets Dev 17, 533–538.

    CAS  Article  Google Scholar 

  50. Schatz, M.C., Maron, L.G., Stein, J.C., Wences, A.H., Gurtowski, J., Biggers, E., Lee, H., Kramer, M., Antoniou, E., Ghiban, E., et al. (2014). Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol 15, 506.

    PubMed  PubMed Central  Google Scholar 

  51. Servant, N., Varoquaux, N., Lajoie, B.R., Viara, E., Chen, C.J., Vert, J.P., Heard, E., Dekker, J., and Barillot, E. (2015). HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16, 259.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. Song, Z., Li, B.O., Chen, J., and Lu, B.R. (2005). Genetic diversity and conservation of common wild rice (Oryza rufipogon) in China. Plant Spec Biol 20, 83–92.

    Article  Google Scholar 

  54. Spannagl, M., Nussbaumer, T., Bader, K.C., Martis, M.M., Seidel, M., Kugler, K.G., Gundlach, H., and Mayer, K.F.X. (2016). PGSB PlantsDB: updates to the database framework for comparative plant genome research. Nucleic Acids Res 44, D1141–D1147.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. Stanke, M., Diekhans, M., Baertsch, R., and Haussler, D. (2008). Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. Stein, J.C., Yu, Y., Copetti, D., Zwickl, D.J., Zhang, L., Zhang, C., Chougule, K., Gao, D., Iwata, A., Goicoechea, J.L., et al. (2018). Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat Genet 50, 285–296.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. Sun, C.Q., Wang, X.K., Li, Z.C., Yoshimura, A., and Iwata, N. (2001). Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theor Appl Genet 102, 157–162.

    CAS  Article  Google Scholar 

  58. Sweeney, M.T., Thomson, M.J., Cho, Y.G., Park, Y.J., Williamson, S.H., Bustamante, C.D., and McCouch, S.R. (2007). Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genet 3, e133.

    PubMed  PubMed Central  Article  Google Scholar 

  59. Tan, L., Li, X., Liu, F., Sun, X., Li, C., Zhu, Z., Fu, Y., Cai, H., Wang, X., Xie, D., et al. (2008). Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40, 1360–1364.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. Tang, H., Zheng, X., Li, C., Xie, X., Chen, Y., Chen, L., Zhao, X., Zheng, H., Zhou, J., Ye, S., et al. (2017). Multi-step formation, evolution, and functionalization of new cytoplasmic male sterility genes in the plant mitochondrial genomes. Cell Res 27, 130–146.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. Vaughan, D.A., Morishima, H., and Kadowaki, K. (2003). Diversity in the Oryza genus. Curr Opin Plant Biol 6, 139–146.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K., et al. (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. Wang, M., Yu, Y., Haberer, G., Marri, P.R., Fan, C., Goicoechea, J.L., Zuccolo, A., Song, X., Kudrna, D., Ammiraju, J.S.S., et al. (2014). The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46, 982–988.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., et al. (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Wang, Y., Tang, H., Debarry, J.D., Tan, X., Li, J., Wang, X., Lee, T., Jin, H., Marler, B., Guo, H., et al. (2012). MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40, e49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Wu, Z., Fang, D., Yang, R., Gao, F., An, X., Zhuo, X., Li, Y., Yi, C., Zhang, T., Liang, C., et al. (2018). De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution. Commun Biol 1, 84.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. Xiao, J., Li, J., Grandillo, S., Ahn, S.N., Yuan, L., Tanksley, S.D., and McCouch, S.R. (1998). Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150, 899–909.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Xie, Y., Shen, R., Chen, L., and Liu, Y.G. (2019). Molecular mechanisms of hybrid sterility in rice. Sci China Life Sci 62, 737–743.

    PubMed  Article  PubMed Central  Google Scholar 

  69. Xu, Z., and Wang, H. (2007). LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35, W265–W268.

    PubMed  PubMed Central  Article  Google Scholar 

  70. Yamanaka, S., Nakamura, I., Nakai, H., and Sato, Y.I. (2003). Dual origin of the cultivated rice based on molecular markers of newly collected annual and perennial strains of wild rice species, Oryza nivara and O. rufipogon. Genet Resour Crop Evol 50, 529–538.

    CAS  Article  Google Scholar 

  71. Yang, C., Kawahara, Y., Mizuno, H., Wu, J., Matsumoto, T., and Itoh, T. (2012). Independent domestication of Asian rice followed by gene flow from japonica to indica. Mol Biol Evol 29, 1471–1479.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. Yang, J., Lee, S.H., Goddard, M.E., and Visscher, P.M. (2011). GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88, 76–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Yu, J., Hu, S., Wang, J., Wong, G.K.S., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. Zdobnov, E.M., and Apweiler, R. (2001). InterProScan—An integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. Zhang, J., Chen, L.L., Xing, F., Kudrna, D.A., Yao, W., Copetti, D., Mu, T., Li, W., Song, J.M., Xie, W., et al. (2016). Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proc Natl Acad Sci USA 113, E5163–E5171.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. Zhang, Q.J., Zhu, T., Xia, E.H., Shi, C., Liu, Y.L., Zhang, Y., Liu, Y., Jiang, W.K., Zhao, Y.J., Mao, S.Y., et al. (2014). Rapid diversification of five Oryza AA genomes associated with rice adaptation. Proc Natl Acad Sci USA 111, E4954–E4962.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. Zhang, W., Liu, J., Zhang, Y., Qiu, J., Li, Y., Zheng, B., Hu, F., Dai, S., and Huang, X. (2020). A high-quality genome sequence of alkaligrass provides insights into halophyte stress tolerance. Sci China Life Sci doi: https://doi.org/10.1007/s11427-020-1662-x.

  78. Zhang, X., Zhou, S., Fu, Y., Su, Z., Wang, X., and Sun, C. (2006). Identification of a drought tolerant introgression line derived from dongxiang common wild rice (O. rufipogon Griff.). Plant Mol Biol 62, 247–259.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. Zhao, K., Wright, M., Kimball, J., Eizenga, G., McClung, A., Kovach, M., Tyagi, W., Ali, M.L., Tung, C.W., Reynolds, A., et al. (2010). Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS ONE 5, e10780.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L., Huang, T., et al. (2018). Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50, 278–284.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. Zhu, Q., Zheng, X., Luo, J., Gaut, B.S., and Ge, S. (2007). Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24, 875–888.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research Program of Guangzhou Science Technology and Innovation Commission (201904020030), the Major Program of Guangdong Basic and Applied Basic Research (2019B030302006) and the National Natural Science Foundation of China (31701051). We thank IRRI for providing the plant material. We thank Xiangdong Liu for the assistance with growing and maintaining the plants.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chengzhi Liang or Yao-Guang Liu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Du, H., Tang, H. et al. A chromosome-level genome assembly of the wild rice Oryza rufipogon facilitates tracing the origins of Asian cultivated rice. Sci. China Life Sci. 64, 282–293 (2021). https://doi.org/10.1007/s11427-020-1738-x

Download citation

Keywords

  • genome
  • genome sequencing
  • evolution
  • Oryza rufipogon
  • rice