Science China Life Sciences

, Volume 62, Issue 8, pp 1098–1100 | Cite as

Structural variation in complex genome: detection, integration and function

  • Ning Yang
  • Shenshen Wu
  • Jianbing YanEmail author


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bush, S.J., Castillo-Morales, A., Tovar-Corona, J.M., Chen, L., Kover, P. X., and Urrutia, A.O. (2014). Presence-absence variation in A. thaliana is primarily associated with genomic signatures consistent with relaxed selective constraints. Mol Biol Evol 31, 59–69.CrossRefPubMedGoogle Scholar
  2. Cao, J., Yu, Y., Huang, J., Liu, R., Chen, Y., Li, S., and Liu, J. (2017). Genome re-sequencing analysis uncovers pathogenecity-related genes undergoing positive selection in Magnaporthe oryzae. Sci China Life Sci 60, 880–890.CrossRefPubMedGoogle Scholar
  3. Chiang, C., Scott, A.J., Davis, J.R., Tsang, E.K., Li, X., Kim, Y., Hadzic, T., Damani, F.N., Ganel, L., Montgomery, S.B., et al. (2017). The impact of structural variation on human gene expression. Nat Genet 49, 692–699.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Editorial. (2018). A reference standard for genome biology. Nat Biotechnol 36, 1121.CrossRefGoogle Scholar
  6. English, A.C., Salerno, W.J., Hampton, O.A., Gonzaga-Jauregui, C., Ambreth, S., Ritter, D.I., Beck, C.R., Davis, C.F., Dahdouli, M., Ma, S., et al. (2015). Assessing structural variation in a personal genome—towards a human reference diploid genome. BMC Genomics 16, 286.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fuentes, R.R., Chebotarov, D., Duitama, J., Smith, S., De la Hoz, J.F., Mohiyuddin, M., Wing, R.A., McNally, K.L., Tatarinova, T., Grigoriev, A., et al. (2019). Structural variants in 3000 rice genomes. Genome Res 29, 870–880.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Garrison, E., Sirén, J., Novak, A.M., Hickey, G., Eizenga, J.M., Dawson, E. T., Jones, W., Garg, S., Markello, C., Lin, M.F., et al. (2018). Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat Biotechnol 36, 875–879.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Guan, P., and Sung, W.K. (2016). Structural variation detection using nextgeneration sequencing data. Methods 102, 36–49.CrossRefPubMedGoogle Scholar
  10. Kronenberg, Z.N., Fiddes, I.T., Gordon, D., Murali, S., Cantsilieris, S., Meyerson, O.S., Underwood, J.G., Nelson, B.J., Chaisson, M.J.P., Dougherty, M.L., et al. (2018). High-resolution comparative analysis of great ape genomes. Science 360, eaar6343.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Li, E., Liu, H., Huang, L., Zhang, X., Dong, X., Song, W., Zhao, H., and Lai, J. (2019). Long-range interactions between proximal and distal regulatory regions in maize. Nat Commun 10, 2633.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Lupianez, D.G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J.M., Laxova, R., et al. (2015). Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Morgante, M., Brunner, S., Pea, G., Fengler, K., Zuccolo, A., and Rafalski, A. (2005). Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37, 997–1002.CrossRefPubMedGoogle Scholar
  14. Navarro, C. (2017). The mobile world of transposable elements. Trends Genet 33, 771–772.CrossRefPubMedGoogle Scholar
  15. Peng, Y., Xiong, D., Zhao, L., Ouyang, W., Wang, S., Sun, J., Zhang, Q., Guan, P., Xie, L., Li, W., et al. (2019). Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nat Commun 10, 2632.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Pyhäjärvi, T., Hufford, M.B., Mezmouk, S., and Ross-Ibarra, J. (2013). Complex patterns of local adaptation in teosinte. Genome Biol Evol 5, 1594–1609.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ranz, J., and Clifton, B. (2019). Characterization and evolutionary dynamics of complex regions in eukaryotic genomes. Sci China Life Sci 62, 467–488.CrossRefPubMedGoogle Scholar
  18. Sibbesen, J.A., Maretty, L., Maretty, L., and Krogh, A. (2018). Accurate genotyping across variant classes and lengths using variant graphs. Nat Genet 50, 1054–1059.CrossRefPubMedGoogle Scholar
  19. Sun, S., Zhou, Y., Chen, J., Shi, J., Zhao, H., Zhao, H., Song, W., Zhang, M., Cui, Y., Dong, X., et al. (2018). Extensive intraspecific gene order and gene structural variations between Mol7 and other maize genomes. Nat Genet 50, 1289–1295.CrossRefPubMedGoogle Scholar
  20. Sedlazeck, F.J., Dhroso, A., Bodian, D.L., Paschall, J., Hermes, F., and Zook, J.M. (2017). Tools for annotation and comparison of structural variation. F1000 Res 6, 1795.CrossRefGoogle Scholar
  21. Shen, Y., Liu, J., Geng, H., Zhang, J., Liu, Y., Zhang, H., Xing, S., Du, J., Ma, S., and Tian, Z. (2018). De novo assembly of a Chinese soybean genome. Sci China Life Sci 61, 871–884.CrossRefPubMedGoogle Scholar
  22. Song, X., and Cao, X. (2017). Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice. Curr Opin Plant Biol 36, 111–118.CrossRefGoogle Scholar
  23. Studer, A., Zhao, Q., Ross-Ibarra, J., and Doebley, J. (2011). Identification of a functional transposon insertion in the maize domestication gene tbl. Nat Genet 43, 1160–1163.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sudmant, PH., Rausch, T., Gardner, E.J., Handsaker, R.E., Abyzov, A., Huddleston, J., Zhang, Y., Ye, K., Jun, G., Hsi-Yang Fritz, M., et al. (2015). An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81.CrossRefPubMedPubMedCentralGoogle Scholar
  25. The 3000 rice genomes project. (2014). The 3,000 rice genomes project. GigaScience 3, 7.CrossRefGoogle Scholar
  26. Torkamaneh, D., Laroche, J., Tardivel, A., O' Donoughue, L., Cober, E., Rajcan, I., and Belzile, F. (2018). Comprehensive description of genomewide nucleotide and structural variation in short-season soya bean. Plant Biotechnol J 16, 749–759.CrossRefPubMedGoogle Scholar
  27. Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X., et al. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40, 761–767.CrossRefPubMedGoogle Scholar
  28. Yang, N., Liu, J., Gao, Q., Gui, S., Chen, L., Yang, L., Huang, J., Deng, T., Luo, J., He, L., et al. (2019). Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet 51, 1052–1059.CrossRefPubMedGoogle Scholar
  29. Zuo, W., Chao, Q., Zhang, N., Ye, J., Tan, G., Li, B., Xing, Y., Zhang, B., Liu, H., Fengler, K.A., et al. (2015). A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47, 151–157.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina

Personalised recommendations