Science China Life Sciences

, Volume 62, Issue 8, pp 1096–1097 | Cite as

Synthetic genome with recoding

  • Bin Jia
  • Hao Song
  • Changjun Liu
  • Yan Sun
  • Yingjin YuanEmail author


  1. Blount, B.A., Gowers, G.O.F., Ho, J.C.H., Ledesma-Amaro, R., Jovicevic, D., McKiernan, R.M., Xie, Z.X., Li, B.Z., Yuan, Y.J., and Ellis, T. (2018). Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat Commun 9, 1932.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Dymond, J.S., Richardson, S.M., Coombes, C.E., Babatz, T., Muller, H., Annaluru, N., Blake, W.J., Schwerzmann, J.W., Dai, J., Lindstrom, D. L., et al. (2011). Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477, 471–476.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Deng, G., Lu, Y., Zlotnikov, G., Thor, A.D., and Smith, H.S. (1996). Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274, 2057–2059.CrossRefPubMedGoogle Scholar
  4. Fredens, J., Wang, K., de la Torre, D., Funke, L.F.H., Robertson, W.E., Christova, Y., Chia, T., Schmied, W.H., Dunkelmann, D.L., Beránek, V., et al. (2019). Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518.CrossRefPubMedGoogle Scholar
  5. Hochrein, L., Mitchell, L.A., Schulz, K., Messerschmidt, K., and Mueller-Roeber, B. (2018). L-SCRaMbLE as a tool for light-controlled Cremediated recombination in yeast. Nat Commun 9, 1931.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Isaacs, F.J., Carr, RA., Wang, H.H., Lajoie, M.J., Sterling, B., Kraal, L., Tolonen, A.C., Gianoulis, T.A., Goodman, D.B., Reppas, N.B., et al. (2011). Rrecise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333, 348–353.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Jia, B., Wu, Y., Li, B.Z., Mitchell, L.A., Liu, H., Ran, S., Wang, J., Zhang, H.R., Jia, N., Li, B., et al. (2018). Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nat Commun 9, 1933.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Koufos, A., Hansen, M.F., Copeland, N.G., Jenkins, N.A., Lampkin, B.C., and Cavenee, W.K. (1985). Loss of heterozygosity in three embryonal tumours suggests a common pathogenetic mechanism. Nature 316, 330–334.CrossRefPubMedGoogle Scholar
  9. Li, Y., Wu, Y., Ma, L., Guo, Z., Xiao, W., and Yuan, Y. (2019). Loss of heterozygosity by SCRaMbLEing. Sci China Life Sci 62, 381–393.CrossRefPubMedGoogle Scholar
  10. Liu, W., Luo, Z., Wang, Y., Rham, N.T., Tuck, L., Pérez-Ri, I., Liu, L., Shen, Y., French, C., Auer, M., et al. (2018). Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods. Nat Commun 9, 1936.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Luo, Z., Wang, L., Wang, Y., Zhang, W., Guo, Y., Shen, Y., Jiang, L., Wu, Q., Zhang, C., Cai, Y., et al. (2018). Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nat Commun 9, 1930.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Luo, Z., Yang, Q., Geng, B., Jiang, S., Yang, S., Li, X., Cai, Y., and Dai, J. (2018). Whole genome engineering by synthesis. Sci China Life Sci 61, 1515–1527.CrossRefPubMedGoogle Scholar
  13. Shen, M.J., Wu, Y., Yang, K., Li, Y., Xu, H., Zhang, H., Li, B.Z., Li, X., Xiao, W.H., Zhou, X., et al. (2018). Heterozygous diploid and interspecies SCRaMbLEing. Nat Commun 9, 1934.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ma, L., Li, Y., Chen, X., Ding, M., Wu, Y., and Yuan, Y.J. (2019). SCRaMbLE generates evolved yeasts with increased alkali tolerance. Microb Cell Fact 18, 52.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Mercy, G., Mozziconacci, J., Scolari, V.F., Yang, K., Zhao, G., Thierry, A., Luo, Y., Mitchell, L.A., Shen, M., Shen, Y., et al. (2017). 3D organization of synthetic and scrambled chromosomes. Science 355, eaaf4597.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mitchell, L.A., Wang, A., Stracquadanio, G., Kuang, Z., Wang, X., Yang, K., Richardson, S., Martin, J.A., Zhao, Y., Walker, R., et al. (2017). Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science 355, eaaf4831.CrossRefPubMedGoogle Scholar
  17. Ostrov, N., Landon, M., Guell, M., Kuznetsov, G., Teramoto, J., Cervantes, N., Zhou, M., Singh, K., Napolitano, M.G., Moosburner, M., et al. (2016). Design, synthesis, and testing toward a 57-codon genome. Science 353, 819–822.CrossRefPubMedGoogle Scholar
  18. Richardson, S.M., Mitchell, L.A., Stracquadanio, G., Yang, K., Dymond, J. S., DiCarlo, J.E., Lee, D., Huang, C.L.V., Chandrasegaran, S., Cai, Y., et al. (2017). Design of a synthetic yeast genome. Science 355, 1040–1044.CrossRefPubMedGoogle Scholar
  19. Shen, Y., Stracquadanio, G., Wang, Y., Yang, K., Mitchell, L.A., Xue, Y., Cai, Y., Chen, T., Dymond, J.S., Kang, K., et al. (2016). SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res 26, 36–49.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Shen, Y., Wang, Y., Chen, T., Gao, F., Gong, J., Abramczyk, D., Walker, R., Zhao, H., Chen, S., Liu, W., et al. (2017). Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science 355, eaaf4791.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Venetz, J.E., Del Medico, L., Wölfle, A., Schächle, R., Bucher, Y., Appert, D., Tschan, F., Flores-Tinoco, C.E., van Kooten, M., Guennoun, R., et al. (2019). Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality. Rroc Natl Acad Sci USA 116, 8070–8079.CrossRefGoogle Scholar
  22. Wang, J., Xie, Z.X., Ma, Y., Chen, X.R., Huang, Y.Q., He, B., Bin Jia, B., Li, B.Z., and Yuan, Y.J. (2018). Ring synthetic chromosome V SCRaMbLE. Nat Commun 9, 3783.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Wang, K., Fredens, J., Brunner, S.F., Kim, S.H., Chia, T., and Chin, J.W. (2016). Defining synonymous codon compression schemes by genome recoding. Nature 539, 59–64.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Wu, Y., Li, B.Z., Zhao, M., Mitchell, L.A., Xie, Z.X., Lin, Q.H., Wang, X., Xiao, W.H., Wang, Y., Zhou, X., et al. (2017). Bug mapping and fitness testing of chemically synthesized chromosome X. Science 355, eaaf4706.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Wu, Y., Zhu, R.Y., Mitchell, L.A., Ma, L., Liu, R., Zhao, M., Jia, B., Xu, H., Li, Y.X., Yang, Z.M., et al. (2018). In vitro DNA SCRaMbLE. Nat Commun 9, 1935.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Xie, Z.X., Li, B.Z., Mitchell, L.A., Wu, Y., Qi, X., Jin, Z., Jia, B., Wang, X., Zeng, B.X., Liu, H.M., et al. (2017). “Perfect” designer chromosome V and behavior of a ring derivative. Science 355, eaaf4704.CrossRefPubMedGoogle Scholar
  27. Zhang, F., and Voytas, D.F. (2018). Synthetic genomes engineered by SCRaMbLEing. Sci China Life Sci 61, 975–977.CrossRefPubMedGoogle Scholar
  28. Zhang, W., Zhao, G., Luo, Z., Lin, Y., Wang, L., Guo, Y., Wang, A., Jiang, S., Jiang, Q., Gong, J., et al. (2017). Engineering the ribosomal DNA in a megabase synthetic chromosome. Science 355, eaaf3981.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bin Jia
    • 1
    • 2
  • Hao Song
    • 1
    • 2
  • Changjun Liu
    • 1
    • 2
  • Yan Sun
    • 1
    • 2
  • Yingjin Yuan
    • 1
    • 2
    Email author
  1. 1.Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations