Effective generation of maternal genome point mutated porcine embryos by injection of cytosine base editor into germinal vesicle oocytes

Abstract

Cytosine and adenine base editors are promising new tools for introducing precise genetic modifications that are required to generate disease models and to improve traits in pigs. Base editors can catalyze the conversion of C→T (C>T) or A→G (A>G) in the target site through a single guide RNA. Injection of base editors into the zygote cytoplasm can result in the production of offspring with precise point mutations, but most F0 are mosaic, and breeding of F1 heterozygous pigs is time-intensive. Here, we developed a method called germinal vesicle oocyte base editing (GVBE) to produce point mutant F0 porcine embryos by editing the maternal alleles during the GV to MII transition. Injection of cytosine base editor 3 (BE3) mRNA and X-linked Dmd-specific guide RNAs into GVoocytes efficiently edited maternal Dmd during in vitro maturation and did not affect the maturation potential of the oocytes. The edited MII oocytes developed into blastocysts after parthenogenetic activation (PA) or in vitro fertilization (IVF). However, BE3 may reduce the developmental potential of IVF blastocysts from 31.5%±0.8% to 20.4% ±2.1%. There 40%–78.3% diploid PA blastocysts had no more than two different alleles, including up to 10% embryos that had only C>T mutation alleles. Genotyping of IVF blastocysts indicated that over 70% of the edited embryos had one allele or two different alleles of Dmd. Since the male embryos had only a copy of Dmd allele, all five (5/19) F0 male embryos are homozygous and three of them were Dmd precise C>T mutation. Nine (9/19) female IVF embryos had two different alleles including a WT and a C>T mutation. DNA sequencing showed that some of them might be heterozygous embryos. In conclusion, the GVBE method is a valuable method for generating F0 embryos with maternal point mutated alleles in a single step.

This is a preview of subscription content, log in to check access.

References

  1. Aslan, Y., Tadjuidje, E., Zorn, A.M., and Cha, S.W. (2017). High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0Xenopus.Development 144, 2852–2858.

    CAS  Article  Google Scholar 

  2. Eid, A., Alshareef, S., and Mahfouz, M.M. (2018). CRISPR base editors: genome editing without double-stranded breaks. Biochem J 475, 1955–1964.

    CAS  Article  Google Scholar 

  3. Fan, N., and Lai, L. (2013). Genetically modified pig models for human diseases. J Genet Genomics 40, 67–73.

    CAS  Article  Google Scholar 

  4. Ferré, P., Bui, T.M.T., Wakai, T., and Funahashi, H. (2016). Effect of removing cumulus cells from porcine cumulus-oocyte complexes derived from small and medium follicles during IVM on the apoptotic status and meiotic progression of the oocytes. Theriogenology 1705–1710.

    Article  Google Scholar 

  5. Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., and Liu, D.R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471.

    CAS  Article  Google Scholar 

  6. Gehrke, J.M., Cervantes, O., Clement, M.K., Wu, Y., Zeng, J., Bauer, D.E., Pinello, L., and Joung, J.K. (2018). An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol 36, 977–982.

    CAS  Article  Google Scholar 

  7. Gerlach, M., Kraft, T., Brenner, B., Petersen, B., Niemann, H., and Montag, J. (2018). Efficient knock-in of a point mutation in porcine fibroblasts using the CRISPR/Cas9-GMNN fusion gene. Genes 296.

  8. Grünewald, J., Zhou, R., Garcia, S.P., Iyer, S., Lareau, C.A., Aryee, M.J., and Joung, J.K. (2019). Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 433–437.

    Article  Google Scholar 

  9. Guo, R., Zhu, G., Zhu, H., Ma, R., Peng, Y., Liang, D., and Wu, L. (2015). DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy. J Hum Genet 60, 435–442.

    CAS  Article  Google Scholar 

  10. Ho, T.T., Zhou, N., Huang, J., Koirala, P., Xu, M., Fung, R., Wu, F., and Mo, Y.Y. (2015). Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res 43, e17.

    Article  Google Scholar 

  11. Hoffman, E.P., Brown Jr., R.H., and Kunkel, L.M. (1987). Dystrophin: The protein product of the duchenne muscular dystrophy locus. Cell 51, 919–928.

    CAS  Article  Google Scholar 

  12. Hu, J.H., Miller, S.M., Geurts, M.H., Tang, W., Chen, L., Sun, N., Zeina, C. M., Gao, X., Rees, H.A., Lin, Z., et al. (2018). Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63.

    CAS  Article  Google Scholar 

  13. Huang, S., Liao, Z., Li, X., Liu, Z., Li, G., Li, J., Lu, Z., Zhang, Y., Li, X., Ma, X., et al. (2019). Developing ABEmax-NG with precise targeting and expanded editing scope to model pathogenic splice site mutations in vivo. iScience 15, 640–648.

    CAS  Article  Google Scholar 

  14. Huang, T.P., Zhao, K.T., Miller, S.M., Gaudelli, N.M., Oakes, B.L., Fellmann, C., Savage, D.F., and Liu, D.R. (2019). Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol 37, 626–631.

    CAS  Article  Google Scholar 

  15. Jackson, M., Marks, L., May, G.H.W., and Wilson, J.B. (2018). The genetic basis of disease. Essays Biochem 62, 643–723.

    Article  Google Scholar 

  16. Jiang, W., Liu, L., Chang, Q., Xing, F., Ma, Z., Fang, Z., Zhou, J., Fu, L., Wang, H., Huang, X., et al. (2018). Production of Wilson disease model rabbits with homology-directed precision point mutations in the ATP7B gene using the CRISPR/Cas9 system. Sci Rep 8, 1332.

    Article  Google Scholar 

  17. Kim, D., Kim, D.E., Lee, G., Cho, S.I., and Kim, J.S. (2019). Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat Biotechnol 37, 430–435.

    CAS  Article  Google Scholar 

  18. Klymiuk, N., Blutke, A., Graf, A., Krause, S., Burkhardt, K., Wuensch, A., Krebs, S., Kessler, B., Zakhartchenko, V., Kurome, M., et al. (2013). Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum Mol Genet 22, 4368–4382.

    CAS  Article  Google Scholar 

  19. Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and Liu, D.R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424.

    CAS  Article  Google Scholar 

  20. Lee, H.K., Willi, M., Miller, S.M., Kim, S., Liu, C., Liu, D.R., and Hennighausen, L. (2018). Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun 9, 4804.

    Article  Google Scholar 

  21. Li, T., Liu, B., Chen, C.Y., and Yang, B. (2016). TALEN-mediated homologous recombination produces site-directed DNA base change and herbicide-resistant rice. J Genet Genomics 43, 297–305.

    Article  Google Scholar 

  22. Liang, P., Sun, H., Sun, Y., Zhang, X., Xie, X., Zhang, J., Zhang, Z., Chen, Y., Ding, C., Xiong, Y., et al. (2017). Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein Cell 8, 601–611.

    CAS  Article  Google Scholar 

  23. Liang, P., Sun, H., Zhang, X., Xie, X., Zhang, J., Bai, Y., Ouyang, X., Zhi, S., Xiong, Y., Ma, W., et al. (2018). Effective and precise adenine base editing in mouse zygotes. Protein Cell 9, 808–813.

    Article  Google Scholar 

  24. Liang, P., Xie, X., Zhi, S., Sun, H., Zhang, X., Chen, Y., Chen, Y., Xiong, Y., Ma, W., Liu, D., et al. (2019). Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat Commun 10, 67.

    CAS  Article  Google Scholar 

  25. Liang, P., Xu, Y., Zhang, X., Ding, C., Huang, R., Zhang, Z., Lv, J., Xie, X., Chen, Y., Li, Y., et al. (2015). CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6, 363–372.

    CAS  Article  Google Scholar 

  26. Mout, R., Ray, M., Yesilbag Tonga, G., Lee, Y.W., Tay, T., Sasaki, K., and Rotello, V.M. (2017). Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11, 2452–2458.

    CAS  Article  Google Scholar 

  27. Okamoto, S., Amaishi, Y., Maki, I., Enoki, T., and Mineno, J. (2019). Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs. Sci Rep 9, 4811.

    Article  Google Scholar 

  28. Onuma, A., Fujii, W., Sugiura, K., and Naito, K. (2017). Efficient mutagenesis by CRISPR/Cas system during meiotic maturation of porcine oocytes. J Reprod Dev 63, 45–50.

    CAS  Article  Google Scholar 

  29. Park, D.S., Yoon, M., Kweon, J., Jang, A.H., Kim, Y., and Choi, S.C. (2017). Targeted base editing via RNA-guided cytidine deaminases in Xenopus laevis embryos. Mol Cells 40, 823–827.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., et al. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389.

    CAS  Article  Google Scholar 

  31. Selsby, J.T., Ross, J.W., Nonneman, D., and Hollinger, K. (2015). Porcine models of muscular dystrophy. ILAR J 56, 116–126.

    CAS  Article  Google Scholar 

  32. Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., Teramura, H., Yamamoto, T., Komatsu, H., Miura, K., et al. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35, 441–443.

    CAS  Article  Google Scholar 

  33. Song, Y., Zhang, Y., Chen, M., Deng, J., Sui, T., Lai, L., and Li, Z. (2018). Functional validation of the albinism-associated tyrosinase T373K SNP by CRISPR/Cas9-mediated homology-directed repair (HDR) in rabbits. EBioMedicine 36, 517–525.

    Article  Google Scholar 

  34. Su, X., Chen, W., Cai, Q., Liang, P., Chen, Y., Cong, P., and Huang, J. (2019). Production of non-mosaic genome edited porcine embryos by injection of CRISPR/Cas9 into germinal vesicle oocytes. J Genet Genomics 46, 335–342.

    Article  Google Scholar 

  35. Tan, J., Zhang, F., Karcher, D., and Bock, R. (2019). Engineering of high-precision base editors for site-specific single nucleotide replacement. Nat Commun 10, 439.

    CAS  Article  Google Scholar 

  36. Wang, Y., Du, Y., Shen, B., Zhou, X., Li, J., Liu, Y., Wang, J., Zhou, J., Hu, B., Kang, N., et al. (2015). Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep 5, 8256.

    CAS  Article  Google Scholar 

  37. Wilmut, I., Bai, Y., and Taylor, J. (2015). Somatic cell nuclear transfer: origins, the present position and future opportunities. Phil Trans R Soc B 370, 20140366.

    Article  Google Scholar 

  38. Yu, H.H., Zhao, H., Qing, Y.B., Pan, W.R., Jia, B.Y., Zhao, H.Y., Huang, X. X., and Wei, H.J. (2016). Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy. Int J Mol Sci 1668.

  39. Zhao, X., Wei, C., Li, J., Xing, P., Li, J., Zheng, S., and Chen, X. (2017). Cell cycle-dependent control of homologous recombination. Acta Biochim Biophys Sin 49, 655–668.

    CAS  Article  Google Scholar 

  40. Zhou, C., Sun, Y., Yan, R., Liu, Y., Zuo, E., Gu, C., Han, L., Wei, Y., Hu, X., Zeng, R., et al. (2019). Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 275–278.

    CAS  Article  Google Scholar 

  41. Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.L., Wang, D., and Gao, C. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35, 438–440.

    CAS  Article  Google Scholar 

  42. Zuo, E., Sun, Y., Wei, W., Yuan, T., Ying, W., Sun, H., Yuan, L., Steinmetz, L.M., Li, Y., and Yang, H. (2019). Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science eaav9973.

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFC1001901 and 2017YFA0102801), the National Natural Science Foundation (31671540), the National Transgenic Major Program (2016ZX08006003-006), the Natural Science Foundation of Guangdong Province (2015A020212005 and 2014A030312011), the Key R&D Program of Guangdong Province (2018B020203003), and the Guangzhou Science and Technology Project (201803010020). The finders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Peiqing Cong or Junjiu Huang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, X., Chen, W., Cai, Q. et al. Effective generation of maternal genome point mutated porcine embryos by injection of cytosine base editor into germinal vesicle oocytes. Sci. China Life Sci. 63, 996–1005 (2020). https://doi.org/10.1007/s11427-019-1611-1

Download citation

Keywords

  • cytosine base editor
  • point mutation
  • porcine germinal vesicle oocyte
  • maternal genome
  • Dmd