Identification and characterization of two morphologically distinct stem cell subpopulations from human urine samples

Abstract

Urine-derived stem cells (USCs) have shown potentials for the treatment of skeletal and urological disorders. Based on published literature and our own data, USCs consist of heterogeneous populations of cells. In this paper, we identify and characterize two morphologically distinct subpopulations of USCs from human urine samples, named as spindle-shaped USCs (SS-USCs) and rice-shaped USCs (RS-USCs) respectively. The two subpopulations showed similar clone-forming efficiency, while SS-USCs featured faster proliferation, higher motility, and greater potential for osteogenic and adipogenic differentiation, RS-USCs showed greater potential for chondrogenic differentiation. POU5F1 was strongly expressed in both subpopulations, but MYC was weakly expressed. Both subpopulations showed similar patterns of CD24, CD29, CD34, CD44, CD73, CD90 and CD105 expression, while a higher percentage of RS-USCs were positive for CD133. SS-USCs were positive for VIM, weakly positive for SLC12A1 and UMOD, and negative for KRT18, NPHS1, AQP1 and AQP2, indicating a renal mesenchyme origin; while RS-USCs are positive for VIM, partially positive for KRT18, NPHS1, AQP1, SLC12A1 and UMOD, and negative for AQP2, indicating a nephron tubule origin. The above results can facilitate understanding of the biological characteristics of subpopulations of USCs, and provide a basis for further research and applications of such cells.

This is a preview of subscription content, access via your institution.

References

  1. Alvarez-Gonzalez, C., Duggleby, R., Vagaska, B., Querol, S., Gomez, S.G., Ferretti, P., and Madrigal, A. (2013). Cord blood LinCD45 embryonic-like stem cells are a heterogeneous population that lack self-renewal capacity. PLoS ONE 8, e67968.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bharadwaj, S., Liu, G., Shi, Y., Markert, C., Andersson, K.E., Atala, A., and Zhang, Y. (2011). Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng Part A 17, 2123–2132.

    PubMed  Google Scholar 

  3. Bharadwaj, S., Liu, G., Shi, Y., Wu, R., Yang, B., He, T., Fan, Y., Lu, X., Zhou, X., Liu, H., et al. (2013). Multipotential differentiation of human urine-derived stem cells: Potential for therapeutic applications in urology. Stem Cells 31, 1840–1856.

    CAS  PubMed  Google Scholar 

  4. Bossolasco, P., Montemurro, T., Cova, L., Zangrossi, S., Calzarossa, C., Buiatiotis, S., Soligo, D., Bosari, S., Silani, V., Deliliers, G.L., et al. (2006). Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Res 16, 329–336.

    CAS  PubMed  Google Scholar 

  5. Cao, Z., Wang, D., Li, Y., Xie, W., Wang, X., Tao, L., Wei, Y., Wang, X., and Zhao, L. (2018). Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells. Sci China Life Sci 61, 448–456.

    CAS  PubMed  Google Scholar 

  6. Chen, W., Xie, M., Yang, B., Bharadwaj, S., Song, L., Liu, G., Yi, S., Ye, G., Atala, A., and Zhang, Y. (2017). Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration. J Tissue Eng Regen Med 11, 334–341.

    CAS  PubMed  Google Scholar 

  7. De Coppi, P., Bartsch, G., Siddiqui, M.M., Xu, T., Santos, C.C., Perin, L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25, 100–106.

    CAS  PubMed  Google Scholar 

  8. Gao, P., Jiang, D., Liu, W., Li, H., and Li, Z. (2016). Urine-derived stem cells, a new source of seed cells for tissue engineering. Curr Stem Cell Res Ther 11, 547–553.

    CAS  PubMed  Google Scholar 

  9. Gao, Y., Guo, Y., Duan, A., Cheng, D., Zhang, S., and Wang, H. (2014). Optimization of culture conditions for maintaining porcine induced pluripotent stem cells. DNA Cell Biol 33, 1–11.

    CAS  PubMed  Google Scholar 

  10. Guan, J., Zhang, J., Li, H., Zhu, Z., Guo, S., Niu, X., Wang, Y., and Zhang, C. (2015). Human urine derived stem cells in combination with β-TCP can be applied for bone regeneration. PLoS ONE 10, e0125253.

    PubMed  PubMed Central  Google Scholar 

  11. Guan, J.J., Niu, X., Gong, F.X., Hu, B., Guo, S.C., Lou, Y.L., Zhang, C.Q., Deng, Z.F., and Wang, Y. (2014). Biological characteristics of humanurine-derived stem cells: potential for cell-based therapy in neurology. Tissue Eng Part A 20, 1794–1806.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Han, S., Xiao, Z., Li, X., Zhao, H., Wang, B., Qiu, Z., Li, Z., Mei, X., Xu, B., Fan, C., et al. (2018). Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Sci China Life Sci 61, 2–13.

    CAS  PubMed  Google Scholar 

  13. Han, Z.C., Du, W.J., Han, Z.B., and Liang, L. (2017). New insights into the heterogeneity and functional diversity of human mesenchymal stem cells. Biomed Mater Eng 28, S29–S45.

    CAS  PubMed  Google Scholar 

  14. Huang, Y.Z., Cai, J.Q., Lv, F.J., Xie, H.L., Yang, Z.M., Huang, Y.C., and Deng, L. (2013). Species variation in the spontaneous calcification of bone marrow-derived mesenchymal stem cells. Cytotherapy 15, 323–329.

    CAS  PubMed  Google Scholar 

  15. Huang, Y.Z., Xie, H.Q., Silini, A., Parolini, O., Zhang, Y., Deng, L., and Huang, Y.C. (2017). Mesenchymal stem/progenitor cells derived from articular cartilage, synovial membrane and synovial fluid for cartilage regeneration: current status and future perspectives. Stem Cell Rev Rep 13, 575–586.

    CAS  PubMed  Google Scholar 

  16. Irollo, E. and Pirozzi, G. (2013). CD133: to be or not to be, is this the real question? Am J Transl Res 5, 563–581.

    PubMed  PubMed Central  Google Scholar 

  17. Ju, X.A., Chen, J., Ding, L., Li, Y.Z., Xiao, F.J., Li, Z.Q., and Guo, Z.K. (2013). A slowly proliferating subpopulation in human umbilical cord mesenchymal stem cells in culture. In Vitro Cell Dev Biol Anim 49, 653–656.

    CAS  PubMed  Google Scholar 

  18. Kitamura, S., Sakurai, H., and Makino, H. (2015). Single adult kidney stem progenitor cells reconstitute three-dimensional nephron structures in vitro. Stem Cells 33, 774–784.

    CAS  PubMed  Google Scholar 

  19. Klimanskaya, I., Chung, Y., Becker, S., Lu, S.J., and Lanza, R. (2006). Human embryonic stem cell lines derived from single blastomeres. Nature 444, 481–485.

    CAS  PubMed  Google Scholar 

  20. Kuroda, Y., Kitada, M., Wakao, S., and Dezawa, M. (2011). Bone marrow mesenchymal cells: how do they contribute to tissue repair and are they really stem cells? Arch Immunol Ther Exp 59, 369–378.

    Google Scholar 

  21. Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A., and Humphreys, B.D. (2014). Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci USA 111, 1527–1532.

    CAS  PubMed  Google Scholar 

  22. Lee, J.M., Dedhar, S., Kalluri, R., and Thompson, E.W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172, 973–981.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, K.I., Kim, H.T., and Hwang, D.Y. (2014). Footprint- and xeno-free human iPSCs derived from urine cells using extracellular matrix-based culture conditions. Biomaterials 35, 8330–8338.

    CAS  PubMed  Google Scholar 

  24. Li, P., Tian, H., Li, Z., Wang, L., Gao, F., Ou, Q., Lian, C., Li, W., Jin, C., Zhang, J., et al. (2016). Subpopulations of bone marrow mesenchymal stem cells exhibit differential effects in delaying retinal degeneration. Curr Mol Med 16, 567–581.

    CAS  PubMed  Google Scholar 

  25. Li, X., Gao, H., Uo, M., Sato, Y., Akasaka, T., Feng, Q., Cui, F., Liu, X., and Watari, F. (2009). Effect of carbon nanotubes on cellular functions in vitro. J Biomed Mater Res 91A, 132–139.

    CAS  Google Scholar 

  26. Li, X., Huang, Y., Zheng, L., Liu, H., Niu, X., Huang, J., Zhao, F., and Fan, Y. (2014). Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro. J Biomed Mater Res 102, 1092–1101.

    Google Scholar 

  27. Li, X., Liu, H., Niu, X., Fan, Y., Feng, Q., Cui, F., and Watari, F. (2011). Osteogenic differentiation of human adipose-derived stem cells induced by osteoinductive calcium phosphate ceramics. J Biomed Mater Res 97B, 10–19.

    CAS  Google Scholar 

  28. Li, X., Liu, H., Niu, X., Yu, B., Fan, Y., Feng, Q., Cui, F., and Watari, F. (2012). The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials 33, 4818–4827.

    CAS  PubMed  Google Scholar 

  29. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu, Y., Wang, Z., Chen, L., Wang, J., Li, S., Liu, C., and Sun, D. (2018). The in vitro differentiation of GDNF gene-engineered amniotic fluid-derived stem cells into renal tubular epithelial-like cells. Stem Cells Dev 27, 590–599.

    CAS  PubMed  Google Scholar 

  31. Lv, F.J., Tuan, R.S., Cheung, K.M.C., and Leung, V.Y.L. (2014). Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32, 1408–1419.

    CAS  PubMed  Google Scholar 

  32. Messai, Y., Noman, M.Z., Derouiche, A., Kourda, N., Akalay, I., Hasmim, M., Stasik, I., Ben Jilani, S., Chebil, M., Caignard, A., et al. (2010). Cytokeratin 18 expression pattern correlates with renal cell carcinoma progression: relationship with Snail. Int J Oncol 36.

  33. Pérez-Silos, V., Camacho-Morales, A., and Fuentes-Mera, L. (2016). Mesenchymal stem cells subpopulations: application for orthopedic regenerative medicine. Stem Cells Int 2016(2), 1–9.

    Google Scholar 

  34. Pei, M., Li, J., Zhang, Y., Liu, G., Wei, L., and Zhang, Y. (2014). Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res 356, 391–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Phinney, D.G., and Prockop, D.J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25, 2896–2902.

    PubMed  Google Scholar 

  36. Puri, M.C., and Nagy, A. (2012). Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells 30, 10–14.

    CAS  PubMed  Google Scholar 

  37. Sagrinati, C., Netti, G.S., Mazzinghi, B., Lazzeri, E., Liotta, F., Frosali, F., Ronconi, E., Meini, C., Gacci, M., Squecco, R., et al. (2006). Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 17, 2443–2456.

    CAS  PubMed  Google Scholar 

  38. Schäffler, A., and Büchler, C. (2007). Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 25, 818–827.

    PubMed  Google Scholar 

  39. Schosserer, M., Reynoso, R., Wally, V., Jug, B., Kantner, V., Weilner, S., Buric, I., Grillari, J., Bauer, J.W., and Grillari-Voglauer, R. (2015). Urine is a novel source of autologous mesenchymal stem cells for patients with epidermolysis bullosa. BMC Res Notes 8, 767.

    PubMed  PubMed Central  Google Scholar 

  40. Tai, M.H., Chang, C.C., Kiupel, M., Webster, J.D., Olson, L.K., and Trosko, J.E. (2005). Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26, 495–502.

    CAS  PubMed  Google Scholar 

  41. Wang, L., Wang, L., Huang, W., Su, H., Xue, Y., Su, Z., Liao, B., Wang, H., Bao, X., Qin, D., et al. (2013). Generation of integration-free neural progenitor cells from cells in human urine. Nat Methods 10, 84–89.

    CAS  PubMed  Google Scholar 

  42. Wu, Q., Fang, T., Lang, H., Chen, M., Shi, P., Pang, X., and Qi, G. (2017). Comparison of the proliferation, migration and angiogenic properties of human amniotic epithelial and mesenchymal stem cells and their effects on endothelial cells. Int J Mol Med 39, 918–926.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, R., Liu, G., Fan, Y., Rohozinski, J., Lu, X., Rodriguez, G., Farney, A., Atala, A., and Zhang, Y. (2013). 249 Human urine-derived stem cells originate from parietal stem cells. J Urol 189.

  44. Yu, X., Lin, Y., Yan, X., Tian, Q., Li, L., and Lin, E.H. (2011). CD133, stem cells, and cancer stem cells: myth or reality? Curr Colorect Cancer Rep 7, 253–259.

    Google Scholar 

  45. Zangrossi, S., Marabese, M., Broggini, M., Giordano, R., D’Erasmo, M., Montelatici, E., Intini, D., Neri, A., Pesce, M., Rebulla, P., et al. (2007). Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker. Stem Cells 25, 1675–1680.

    CAS  PubMed  Google Scholar 

  46. Zhang, D., Wei, G., Li, P., Zhou, X., and Zhang, Y. (2014). Urine-derived stem cells: A novel and versatile progenitor source for cell-based therapy and regenerative medicine. Genes Dis 1, 8–17.

    PubMed  PubMed Central  Google Scholar 

  47. Zhang, Y., McNeill, E., Tian, H., Soker, S., Andersson, K.E., Yoo, J.J., and Atala, A. (2008). Urine derived cells are a potential source for urological tissue reconstruction. J Urol 180, 2226–2233.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dan Long, and Fang-Fang Wang, and Yi Zhang for technical assistance, thank Dr. James G. Ogg for grammatical assistance. This work was supported by the National Key Research & Development Program of China (2017YFC1104702), the National Natural Science Foundation of China (31771065, 31600792, 81473446), the Sichuan Science and Technology Program (2019JDRC0020), and the 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYJC18002).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hui-Qi Xie.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest. Human urine samples were collected for experiments with informed consent.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, AJ., Pi, JK., Hu, JG. et al. Identification and characterization of two morphologically distinct stem cell subpopulations from human urine samples. Sci. China Life Sci. 63, 712–723 (2020). https://doi.org/10.1007/s11427-018-9543-1

Download citation

Keywords

  • characterization
  • cell subpopulation
  • identification
  • tissue origin
  • urine-derived stem cells