Science China Life Sciences

, Volume 62, Issue 8, pp 1058–1069 | Cite as

Spatio-temporal patterns of zooplankton in a main-stem dam affected tributary: a case study in the Xiangxi River of the Three Gorges Reservoir, China

  • Xinghao Li
  • Jie HuangEmail author
  • Sabine Filker
  • Thorsten Stoeck
  • Yonghong BiEmail author
  • Yuhe Yu
  • Weibo Song
Research Paper


As the ecologically important recipient channels for riverine ecosystems, tributaries provide unique microhabitats for microorganisms, among which zooplankton constitutes the most important heterotrophic organisms. In particular, the reduced water velocity caused by dams is more favorable for zooplankton development; therefore, dammed rivers are expected to support extremely diverse and abundant zooplankton communities and notably different spatiotemporal distribution patterns. So far, however, only very few molecular studies support these assumptions. Using high-throughput sequencing, a high number of 350 operational taxonomic units (OTUs; 97% cutoff) were retrieved from 30 samples collected in the Xiangxi River, the nearest large tributary upstream of the Three Gorges Dam. Zooplankton did not show significant spatial distribution in the channel. Instead, the community structures varied significantly over sampling dates, corroborating the seasonal patterns found in lakes and ponds in the subtropical zone. As expected, the community compositions were deterministically governed by environmental filtering processes (phylogenetic clustering), in which water velocity appeared to be much less important than other investigated environmental factors. Moreover, most of the detected phylotypes (OTUs) had a relatively high (>90%) sequence similarity to previously deposited sequences, suggesting a mediocre degree of genetic novelty within the zooplankton communities in the Xiangxi River.


zooplankton high-throughput sequencing spatiotemporal distribution genetic novelty tributary main-stem dam 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge Dianbao Li and Wenchao Nie for help with sampling and DNA extraction. This work was supported by the National Natural Science Foundation of China (31772433, 31801984) and Biodiversity survey of aquatic organisms in Three Gorges Reservoir area and the illustrated handbook compilation (2014FY120200).

Supplementary material

11427_2018_9523_MOESM1_ESM.xls (170 kb)
Supplementary material, approximately 170 KB.


  1. Abdullah Al. M., Gao, Y., Xu, G., Wang, Z., Warren, A., and Xu, H. (2018). Trophic-functional patterns of biofilm-dwelling ciliates at different water depths in coastal waters of the Yellow Sea, northern China. Eur J Protistol 63, 34–43.Google Scholar
  2. Allan, J.D. (1976). Life history patterns in zooplankton. Am Natist 110, 165–180.CrossRefGoogle Scholar
  3. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J Mol Biol 215, 403–410.CrossRefGoogle Scholar
  4. Apstein, C. (1907). Das plankton in Colombo-See auf Ceylon. Zoologische Jahrbücher, 201–244.Google Scholar
  5. Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media 8, 361–362.Google Scholar
  6. Bi, Y., Zhu, K., Hu, Z., Zhang, L., Yu, B., and Zhang, Q. (2010). The effects of the Three Gorges Dam’s (TGD’s) experimental impoundment on the phytoplankton community in the Xiangxi River, China. Int J Environ Stud 67, 207–221.CrossRefGoogle Scholar
  7. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burdis, R.M., and Hoxmeier, R.J.H. (2011). Seasonal zooplankton dynamics in main channel and backwater habitats of the Upper Mississippi River. Hydrobiologia 667, 69–87.CrossRefGoogle Scholar
  9. Chen, L., Zhao, X., Shao, C., Miao, M., and Clamp, J.C. (2017). Morphology and phylogeny of two new ciliates, Sterkiella sinica sp. nov. and Rubrioxytricha tsinlingensis sp. nov. (Protozoa, Ciliophora, Hypotrichia) from north-west China. Systat Biodivers 15, 131–142.CrossRefGoogle Scholar
  10. Cooper, S.D., and Goldman, C.R. (1980). Opossum shrimp (Mysis relicta) predation on zooplankton. Can J Fish Aquat Sci 37, 909–919.CrossRefGoogle Scholar
  11. Csardi, G., and Nepusz, T. (2006). The igraph software package for complex network research. Inter J Compl Syst, 1695.Google Scholar
  12. Domingues, C.D., da Silva, L.H.S., Rangel, L.M., de Magalhães, L., de Melo Rocha, A., Lobão, L.M., Paiva, R., Roland, F., and Sarmento, H. (2017). Microbial food-web drivers in tropical reservoirs. Microb Ecol 73, 505–520.CrossRefPubMedGoogle Scholar
  13. Edgar, R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10, 996–998.CrossRefPubMedGoogle Scholar
  14. Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Filker, S., Gimmler, A., Dunthorn, M., Mahé, F., and Stoeck, T. (2015). Deep sequencing uncovers protistan plankton diversity in the Portuguese Ria Formosa solar saltern ponds. Extremophiles 19, 283–295.CrossRefPubMedGoogle Scholar
  16. Filker, S., Sommaruga, R., Vila, I., and Stoeck, T. (2016). Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns. Mol Ecol 25, 2286–2301.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fu, C.Y., Fang, T., and Deng, N.S. (2006). The research of phosphorus of Xiangxi River nearby the Three Gorges, China. Environ Geol 49, 923–928.CrossRefGoogle Scholar
  18. Galtier, N., Gouy, M., and Gautier, C. (1996). SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics 12, 543–548.CrossRefGoogle Scholar
  19. Godreau, V., Bornette, G., Frochot, B., Amoros, C., Castella, E., Oertli, B., Chambaud, F., Oberti, D., and Craney, E. (1999). Biodiversity in the floodplain of Saone: a global approach. Biodivers Conserv 8, 839–864.CrossRefGoogle Scholar
  20. Gogola, T.M., Daga, V.S., Silva, P.R.L., Sanches, P.V., Gubiani, É.A., Baumgartner, G., and Delariva, R.L. (2010). Spatial and temporal distribution patterns of ichthyoplankton in a region affected by water regulation by dams. Neotrop ichthyol 8, 341–349.CrossRefGoogle Scholar
  21. Guo, H., Hu, Q., Zhang, Q., and Feng, S. (2012). Effects of the Three Gorges Dam on Yangtze River flow and river interaction with Poyang Lake, China: 2003–2008. J Hydrol 416–417, 19–27.CrossRefGoogle Scholar
  22. Hammer-Muntz, O., Harper, D.A.T., and Ryan, P.D. (2001). PAST: Paleontological Statistics Software Package for Education and Data analysis. Palaeontol Electron 4, 4–9.Google Scholar
  23. Havel, J.E., Medley, K.A., Dickerson, K.D., Angradi, T.R., Bolgrien, D.W., Bukaveckas, P.A., and Jicha, T.M. (2009). Effect of main-stem dams on zooplankton communities of the Missouri River (USA). Hydrobiologia 628, 121–135.CrossRefGoogle Scholar
  24. Huang, X.F. (2000). Survey, observation and analysis of lake ecology (Beijing: China Standard Press).Google Scholar
  25. Hubbell, S.P. (2001). The unified neutral theory of biodiversity and biogeography (MPB-32) (Princeton: Princeton University Press).Google Scholar
  26. Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., and Webb, C.O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464.CrossRefPubMedGoogle Scholar
  27. Kobayashi, T., Shiel, R.J., Gibbs, P., and Dixon, P.I. (1998). Freshwater zooplankton in the Hawkesbury-Nepean River: comparison of community structure with other rivers. Hydrobiologia 377, 133–145.CrossRefGoogle Scholar
  28. Lair, N., and Reyes-Marchant, P. (1997). The potamoplankton of the Middle Loire and the role of the ‘moving littoral’ in downstream transfer of algae and rotifers. Hydrobiologia 356, 33–52.CrossRefGoogle Scholar
  29. Li, X., Yu, Y., Li, C., and Yan, Q. (2018). Comparative study on the gut microbiotas of four economically important Asian carp species. Sci China Life Sci 61, 696–705.CrossRefPubMedGoogle Scholar
  30. Li, X., Zhou, L., Yu, Y., Ni, J., Xu, W., and Yan, Q. (2017). Composition of gut microbiota in the gibel carp (Carassius auratus gibelio) varies with host development. Microb Ecol 74, 239–249.CrossRefPubMedGoogle Scholar
  31. Liu, W., Jiang, J., Xu, Y., Pan, X., Qu, Z., Luo, X., El-Serehy, H.A., Warren, A., Ma, H., and Pan, H. (2017). Diversity of free-living marine ciliates (Alveolata, Ciliophora): Faunal studies in coastal waters of China during the years 2011–2016. Eur J Protistol 61, 424–438.CrossRefPubMedGoogle Scholar
  32. Lu, X., Huang, J., Shao, C., and Berger, H. (2018). Morphology, cell-division, and phylogeny of Schmidingerothrix elongata spec. nov. (Ciliophora, Hypotricha), and brief guide to hypotrichs with Gonostomum-like oral apparatus. Eur J Protistology 62, 24–42.CrossRefGoogle Scholar
  33. Luo, X.T., Gao, F., Yi, Z.Z., Pan, Y., Al-Farraj, S.A., and Warren, A. (2017) Taxonomy and molecular phylogeny of two new brackish hypotrichous ciliates, with the establishment of a new genus (Ciliophora, Spirotrichea). Zool J Linn Soc-Lond 179, 475–491.Google Scholar
  34. Maavara, T., Lauerwald, R., Regnier, P., and Van Cappellen, P. (2017). Global perturbation of organic carbon cycling by river damming. Nat Commun 8, 15347.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Magilligan, F.J., and Nislow, K.H. (2005). Changes in hydrologic regime by dams. Geomorphology 71, 61–78.CrossRefGoogle Scholar
  36. Magoč, T., and Salzberg, S.L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L., Horner-Devine, M.C., Kane, M., Krumins, J.A., Kuske, C.R., et al. (2006). Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4, 102–112.CrossRefGoogle Scholar
  38. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., et al. (2018). vegan: Community Ecology Package.Google Scholar
  39. Petts, G.E., and Gurnell, A.M. (2005). Dams and geomorphology: Research progress and future directions. Geomorphology 71, 27–47.CrossRefGoogle Scholar
  40. Pontarp, M., Canbäck, B., Tunlid, A., and Lundberg, P. (2012). Phylogenetic analysis suggests that habitat filtering is structuring marine bacterial communities across the globe. Microb Ecol 64, 8–17.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Portinho, J.L., Perbiche-Neves, G., and Nogueira, M.G. (2016). Zooplankton community and tributary effects in free-flowing section downstream a large tropical reservoir. Internat Rev Hydrobiol 101, 48–56.CrossRefGoogle Scholar
  42. R Development Core Team. (2008). R: a language and environment for statistical computing. (Vienna, Austria: R Foundation for Statistical Computing).Google Scholar
  43. Rice, S.P., Kiffney, P., and Greene, C., et al. (2008). The ecological importance of tributaries and confluences. In Rice, S.P., Roy, A.G., Rhoads, B.L., eds. River confluences, tributaries and the fluvial network (wiley online books), pp. 210–212.Google Scholar
  44. Scarabotti, P.A., Demonte, L.D., and Pouilly, M. (2017). Climatic seasonality, hydrological variability, and geomorphology shape fish assemblage structure in a subtropical floodplain. Freshwater Sci 36, 653–668.CrossRefGoogle Scholar
  45. Sommer, U., Adrian, R., De Senerpont Domis, L., Elser, J.J., Gaedke, U., Ibelings, B., Jeppesen, E., Lürling, M., Molinero, J.C., Mooij, W.M., et al. (2012). Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43, 429–448.CrossRefGoogle Scholar
  46. Srifa, A., Phlips, E.J., Cichra, M.F., and Hendrickson, J.C. (2016). Phytoplankton dynamics in a subtropical lake dominated by cyanobacteria: cyanobacteria ‘Like it Hot’ and sometimes dry. Aquat Ecol 50, 163–174.CrossRefGoogle Scholar
  47. Stegen, J.C., Lin, X., Konopka, A.E., and Fredrickson, J.K. (2012). Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6, 1653–1664.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Su, Q., Jiang, X., and Li, J. (2014). Phosphorus limitation and excess carbon in zooplankton. Acta Ecol Sin 34, 191–195.CrossRefGoogle Scholar
  49. Thévenot, E.A., Roux, A., Xu, Y., Ezan, E., and Junot, C. (2015). Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res 14, 3322–3335.CrossRefPubMedGoogle Scholar
  50. Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., and Cushing, C.E. (1980). The river continuum concept. Can J Fish Aquat Sci 37, 130–137.CrossRefGoogle Scholar
  51. Viroux, L. (1999). Zooplankton distribution in flowing waters and its implications for sampling: case studies in the River Meuse (Belgium) and the River Moselle (France, Luxembourg). J Plankton Res 21, 1231–1248.CrossRefGoogle Scholar
  52. Walks, D.J., and Cyr, H. (2004). Movement of plankton through lake-stream systems. Freshwater Biol 49, 745–759.CrossRefGoogle Scholar
  53. Wang, H.Y. (2005). Effects of the Three Gorges Reservoir on the water environment of the Xiangxi River with the proposal of countermeasures (in Chinese). Resources Environ Yangtze Basin 14, 233–237.Google Scholar
  54. Wang, J., Wang, B.S., and Luo, Z.Q. (1997). Dictionary of the Yangtze River (Wuhan: Wuhan Press).Google Scholar
  55. Wang, J., Shen, J., Wu, Y., Tu, C., Soininen, J., Stegen, J.C., He, J., Liu, X., Zhang, L., and Zhang, E. (2013). Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J 7, 1310–1321.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yan, Q., Bi, Y., Deng, Y., He, Z., Wu, L., Van Nostrand, J.D., Shi, Z., Li, J., Wang, X., Hu, Z., et al. (2015). Impacts of the Three Gorges Dam on microbial structure and potential function. Sci Rep 5, 8605.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yan, Y., Rogers, A.J., Gao, F., and Katz, L.A. (2017). Unusual features of non-dividing somatic macronuclei in the ciliate class Karyorelictea. Eur J Protistol 61, 399–408.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yang, Z., Wang, H., Saito, Y., Milliman, J.D., Xu, K., Qiao, S., and Shi, G. (2006). Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: the past 55 years and after the Three Gorges Dam. Water Resour Res 42, W04407.Google Scholar
  59. Zhan, A., Bailey, S.A., Heath, D.D., and Macisaac, H.J. (2014). Performance comparison of genetic markers for high-throughput sequencing-based biodiversity assessment in complex communities. Mol Ecol Resour 14.Google Scholar
  60. Zhang, H., Chen, R., Li, F., and Chen, L. (2015). Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures. Chin J Ocean Limnol 33, 430–438.CrossRefGoogle Scholar
  61. Zhao, Y., Yi, Z., Warren, A., and Song, W.B. (2018). Species delimitation for the molecular taxonomy and ecology of the widely distributed microbial eukaryote genus Euplotes (Alveolata, Ciliophora). Proc R Soc B 285, 20172159.CrossRefPubMedGoogle Scholar
  62. Zhou, S., Huang, X., and Cai, Q. (2007). Vertical distribution and migration of planktonic rotifers in Xiangxi Bay of the three Gorges Reservoir, China. J Freshwater Ecol 22, 441–449.CrossRefGoogle Scholar
  63. Zhou, S., Tang, T., Wu, N., Fu, X., and Cai, Q. (2008). Impacts of a small dam on riverine zooplankton. Internat Rev Hydrobiol 93, 297–311.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Protozoology, Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
  2. 2.Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  3. 3.Department of Molecular EcologyUniversity of Technology KaiserslauternKaiserslauternGermany
  4. 4.Department of EcologyUniversity of Technology KaiserslauternKaiserslauternGermany
  5. 5.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations