Science China Life Sciences

, Volume 62, Issue 8, pp 1087–1095 | Cite as

Strategy for efficient cloning of biosynthetic gene clusters from fungi

  • Ruixin Li
  • ZiXin Li
  • Ke Ma
  • Gang Wang
  • Wei Li
  • Hong-Wei Liu
  • Wen-Bing YinEmail author
  • Peng ZhangEmail author
  • Xing-Zhong LiuEmail author
Research Paper


Filamentous fungi are excellent sources for the production of a group of bioactive small molecules which are often called secondary metabolites (SMs). The advanced genome sequencing technology combined with bioinformatics analysis reveals a large number of unexplored biosynthetic gene clusters (BGCs) in the fungal genomes. To unlock this fungal SM treasure, many approaches including heterologous expression are being developed and efficient cloning of the BGCs is a crucial step to do this. Here, we present an efficient strategy for the direct cloning of fungal BGCs. This strategy consisted of Splicing by Overlapping Extension (SOE)-PCR and yeast assembly in vivo. By testing 14 BGCs DNA fragments ranging from 7 kb to 52 kb, the average positive rate was over 80%. The maximal insertion size for fungal BGC assembly was 52 kb. Those constructs could be used conveniently for the heterologous expression leading to the discovery of novel natural products. Thus, our results provide an efficient and quick method for the low cost direct cloning of fungal BGCs.


biosynthetic gene clusters Saccharomyces cerevisiae homologous recombination DNA assembly 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11427_2018_9511_MOESM1_ESM.docx (21 kb)
Supplementary material, approximately 20.8 KB.


  1. Bilyk, O., Sekurova, O.N., Zotchev, S.B., and Luzhetskyy, A. (2016). Cloning and heterologous expression of the grecocycline biosynthetic gene cluster. PLoS ONE 11, e0158682.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blackwell, M. (2011). The Fungi: 1, 2, 3 & 5.1 million species? Am J Bot 98, 426–438.CrossRefPubMedGoogle Scholar
  3. Brakhage, A.A., and Schroeckh, V. (2011). Fungal secondary metabolites — Strategies to activate silent gene clusters. Fungal Genets Biol 48, 15–22.CrossRefGoogle Scholar
  4. Chaffin, D.O., and Rubens, C.E. (1998). Blue/white screening of recombinant plasmids in Gram-positive bacteria by interruption of alkaline phosphatase gene (phoZ) expression. Gene 219, 91–99.CrossRefPubMedGoogle Scholar
  5. Clevenger, K.D., Bok, J.W., Ye, R., Miley, G.P., Verdan, M.H., Velk, T., Chen, C., Yang, K.H., Robey, M.T., Gao, P., et al. (2017). A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat Chem Biol 13, 895–901.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Clutterbuck, P.W., Lovell, R., and Raistrick, H. (1932). Studies in the biochemistry of micro-organisms. Biochem J 26, 1907–1918.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cohen, S.N., Chang, A.C.Y., Boyer, H.W., and Helling, R.B. (1973). Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70, 3240–3244.CrossRefGoogle Scholar
  8. Fan, A., Mi, W., Liu, Z., Zeng, G., Zhang, P., Hu, Y., Fang, W., and Yin, W.B. (2017). Deletion of a Histone Acetyltransferase Leads to the Pleiotropic Activation of Natural Products in Metarhizium robertsii. Org Lett 19, 1686–1689.CrossRefPubMedGoogle Scholar
  9. Fekete, E., Karaffa, L., Seiboth, B., Fekete, É. P. Kubicek, C., and Flipphi, M. (2012). Identification of a permease gene involved in lactose utilisation in Aspergillus nidulans. Fungal Genets Biol 49, 415–425.CrossRefGoogle Scholar
  10. Fu, J., Bian, X., Hu, S., Wang, H., Huang, F., Seibert, P.M., Plaza, A., Xia, L., Müller, R., Stewart, A.F., et al. (2012). Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30, 440–446.CrossRefPubMedGoogle Scholar
  11. Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6, 343–345.CrossRefPubMedGoogle Scholar
  12. Han, X., Chakrabortti, A., Zhu, J., Liang, Z.X., and Li, J. (2016). Sequencing and functional annotation of the whole genome of the filamentous fungus Aspergillus westerdijkiae. BMC Genomics 17, 633.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Inglis, D.O., Binkley, J., Skrzypek, M.S., Arnaud, M.B., Cerqueira, G.C., Shah, P., Wymore, F., Wortman, J.R., and Sherlock, G. (2013). Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol 13, 91.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Khaldi, N., Seifuddin, F.T., Turner, G., Haft, D., Nierman, W.C., Wolfe, K.H., and Fedorova, N.D. (2010). SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genets Biol 47, 736–741.CrossRefGoogle Scholar
  15. Kouprina, N., and Larionov, V. (2008). Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat Protoc 3, 371–377.CrossRefPubMedGoogle Scholar
  16. Kupiec, M. (2000). Damage-induced recombination in the yeast Saccharomyces cerevisiae. Mutat Res-Fund Mol M 451, 91–105.CrossRefGoogle Scholar
  17. Larionov, V., Kouprina, N., Graves, J., Chen, X.N., Korenberg, J.R., and Resnick, M.A. (1996). Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. Proc Natl Acad Sci USA 93, 491–496.CrossRefPubMedGoogle Scholar
  18. Li, W., Fan, A., Wang, L., Zhang, P., Liu, Z., An, Z., and Yin, W.B. (2018). Asperphenamate biosynthesis reveals a novel two-module NRPS system to synthesize amino acid esters in fungi. Chem Sci 9, 2589–2594.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lin, H., Lyu, H., Zhou, S., Yu, J., Keller, N.P., Chen, L., and Yin, W.B. (2018). Deletion of a global regulator LaeB leads to the discovery of novel polyketides in Aspergillus nidulans. Org Biomol Chem 16, 4973–4976.CrossRefPubMedGoogle Scholar
  20. Ma, H., Kunes, S., Schatz, P.J., and Botstein, D. (1987). Plasmid construction by homologous recombination in yeast. Gene 58, 201–216.CrossRefPubMedGoogle Scholar
  21. Ma, Z., Li, W., Zhang, P., Lyu, H., Hu, Y., and Yin, W.B. (2018). Rational design for heterologous production of aurovertin-type compounds in Aspergillus nidulans. Appl Microbiol Biotechnol 102, 297–304.CrossRefPubMedGoogle Scholar
  22. Mayorga, M.E., and Timberlake, W.E. (1990). Isolation and molecular characterization of the Aspergillus nidulans wA gene. Genetics 126, 73–79.PubMedPubMedCentralGoogle Scholar
  23. Muller, H., Annaluru, N., Schwerzmann, J.W., Richardson, S.M., Dymond, J.S., Cooper, E.M., Bader, J.S., Boeke, J.D., and Chandra-segaran, S. (2012). Assembling large DNA segments in yeast. In Gene Synthesis: Methods and Protocols, J. Peccoud, ed. (New Jersey: Humana Press), pp. 133–150.CrossRefGoogle Scholar
  24. Niu, G., Zheng, J., and Tan, H. (2017). Biosynthesis and combinatorial biosynthesis of antifungal nucleoside antibiotics. Sci China Life Sci 60, 939–947.CrossRefPubMedGoogle Scholar
  25. Paques, F., and Haber, J.E. (1999). Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63, 349–404.PubMedPubMedCentralGoogle Scholar
  26. Reen, F.J., Romano, S., Dobson, A.D.W., and O’Gara, F. (2015). The sound of silence: activating silent biosynthetic gene clusters in marine microorganisms. Mar Drugs 13, 4754–4783.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Shimizu, K., and Keller, N.P. (2001). Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157, 591–600.PubMedPubMedCentralGoogle Scholar
  28. Shinohara, A., and Ogawa, T. (1995). Homologous recombination and the roles of double-strand breaks. Trends Biochem Sci 20, 387–391.CrossRefPubMedGoogle Scholar
  29. Wiemann, P., and Keller, N.P. (2014). Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 41, 301–313.CrossRefPubMedGoogle Scholar
  30. Wu, G., Zhou, H., Zhang, P., Wang, X., Li, W., Zhang, W., Liu, X., Liu, H.W., Keller, N.P., An, Z., et al. (2016). Polyketide production of pestaloficiols and macrodiolide ficiolides revealed by manipulations of epigenetic regulators in an endophytic fungus. Org Lett 18, 1832–1835.CrossRefPubMedGoogle Scholar
  31. Xu, X., Liu, L., Zhang, F., Wang, W., Li, J., Guo, L., Che, Y., and Liu, G. (2014). Identification of the first diphenyl ether gene cluster for pestheic acid biosynthesis in plant endophyte Pestalotiopsis fici. ChemBioChem 15, 284–292.CrossRefPubMedGoogle Scholar
  32. Yin, W.B., Chooi, Y.H., Smith, A.R., Cacho, R.A., Hu, Y., White, T.C., and Tang, Y. (2013). Discovery of Cryptic Polyketide Metabolites from Dermatophytes Using Heterologous Expression in Aspergillus nidulans. ACS Synth Biol 2, 629–634.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zhang, P., Wang, X., Fan, A., Zheng, Y., Liu, X., Wang, S., Zou, H., Oakley, B.R., Keller, N.P., and Yin, W.B. (2017). A cryptic pigment biosynthetic pathway uncovered by heterologous expression is essential for conidial development in Pestalotiopsis fici. Mol Microbiol 105, 469–483.CrossRefPubMedGoogle Scholar
  34. Zhang, A. P. Lu, A. M. Dahl-Roshak, P. S. Paress, S. Kennedy, J. S. Tkacz, and An, Z.Q. (2003). Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Ag-robacterium-mediated transformation of Glarea lozoyeasis. Mol Genet Genomics 268, 645–655.PubMedGoogle Scholar
  35. Zheng, Y., Ma, K., Lyu, H., Huang, Y., Liu, H., Liu, L., Che, Y., Liu, X., Zou, H., and Yin, W.B. (2017a). Genetic manipulation of the COP9 signalosome subunit PfCsnE leads to the discovery of pestaloficins in Pestalotiopsis fici. Org Lett 19, 4700–4703.CrossRefPubMedGoogle Scholar
  36. Zheng, Y., Wang, X., Zhang, X., Li, W., Liu, G., Wang, S., Yan, X., Zou, H., and Yin, W.B. (2017b). Cop9 signalosome subunit pfcsne regulates secondary metabolism and conidial formation in pestalotiopsis fici. Sci China Life Sci 60, 656–664.CrossRefPubMedGoogle Scholar
  37. Zhou, S., Zhang, P., Zhou, H., Liu, X., Li, S.M., Guo, L., Li, K., and Yin, W.B. (2019). A new regulator RsdA mediating fungal secondary metabolism has a detrimental impact on asexual development in Pestalotiopsis fici. Environ Microbiol 21, 4163–426.CrossRefGoogle Scholar
  38. Zhuo, J., Ma, B., Xu, J., Hu, W., Zhang, J., Tan, H., and Tian, Y. (2017). Reconstruction of a hybrid nucleoside antibiotic gene cluster based on scarless modification of large DNA fragments. Sci China Life Sci 60, 968–979.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina

Personalised recommendations