Skip to main content
Log in

Genetic dissection of root morphological traits as related to potassium use efficiency in rapeseed under two contrasting potassium levels by hydroponics

  • Research Paper
  • From CAS & CAE Members
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

To reveal the genetic basis of potassium use efficiency (KUE) in rapeseed, root morphology (RM), biomass and KUE-related traits were measured in a recombinant inbred line population with 175 F7 lines that were subjected to high-potassium (HK) and low-potassium (LK) treatments by hydroponics. A total of 109 significant QTLs were identified to be associated with the examined traits. Sixty-one of these QTLs were integrated into nine stable QTLs. The higher heritability for RM and biomass traits and lower heritability for KUE-related traits, as well as nine stable QTLs for RM traits and only two for KUE-related traits, suggested that regulating RM traits would be more effective than selecting KUE traits directly to improve KUE by marker-assisted selection. Furthermore, the integration of stable QTLs identified in the HK, LK, high-nitrogen (HN) and low-nitrogen (LN) conditions gave 10 QTL clusters. Seven of these clusters were classified into major QTLs that explained 7.4%–23.7% of the total phenotypic variation. Five of the major QTL clusters were detected under all of the treated conditions, and four clusters were specifically detected under the LK and LN conditions. These common and specific QTL clusters may be useful for the simultaneous improvement of multiple traits by marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, J.A., Wingen, L.U., Griffiths, M., Pound, M.P., Gaju, O., Foulkes, M.J., Le Gouis, J., Griffiths, S., Bennett, M.J., King, J., et al. (2015). Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. J Exp Bot 66, 2283–2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo, G.C., Cheavegatti-Gianotto, A., Negri, B.F., Hufnagel, B., E Silva, L.C., Magalhaes, J.V., Garcia, A.A.F., Lana, U.G.P., de Sousa, S. M., and Guimaraes, C.T. (2015). Multiple interval QTL mapping and searching for PSTOL1 homologs associated with root morphology, biomass accumulation and phosphorus content in maize seedlings under low-P. BMC Plant Biol 15, 172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan, R.F., and Bolland, M.D.A. (2009). Comparing the nitrogen and potassium requirements of canola and wheat for yield and grain quality. J Plant Nutrit 32, 2008–2026.

    Article  CAS  Google Scholar 

  • Churchill, G.A., and Doerge, R.W. (1994). Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson, D.T., and Hanson, J.B. (1980). The mineral nutrition of higher plants. Annu Rev Plant Physiol 31, 239–298.

    Article  CAS  Google Scholar 

  • Coque, M., Martin, A., Veyrieras, J.B., Hirel, B., and Gallais, A. (2008). Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences. Theor Appl Genet 117, 729–747.

    Article  CAS  PubMed  Google Scholar 

  • Cheema, M.A., Wahid, M.A., Sattar, W.A., Rasul, F., and Saleem M.F. (2012). Influence of different levels of potassium on growth, yield and quality of canola (Brassica napus L.) cultivars. Pak J Agri Sci 49, 163–168.

    Google Scholar 

  • Ding, G., Zhao, Z., Liao, Y., Hu, Y., Shi, L., Long, Y., and Xu, F. (2012). Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot 109, 747–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dun, X., Tao, Z., Wang, J., Wang, X., Liu, G., and Wang, H. (2016). Comparative transcriptome analysis of primary roots of Brassica napus seedlings with extremely different primary root lengths using RNA sequencing. Front Plant Sci 7, 1238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eakin, J.H. (1972). Food and fertilizers. In The Fertilizer Handbook (The Fertilizer Institute, Washington, DC), pp. 1–21.

    Google Scholar 

  • Erel, R., Yermiyahu, U., Ben-Gal, A., Dag, A., Shapira, O., and Schwartz, A. (2015). Modification ofnon-stomatal limitation and photoprotection due to K and Na nutrition of olive trees. J Plant Physiol 177, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Fageria, N.K., Baligar, V.C., and Li, Y.C. (2008). The role of nutrient efficient plants in improving crop yields in the twenty first century. J Plant Nutrit 31, 1121–1157.

    Article  CAS  Google Scholar 

  • Fang, Y., Wu, W., Zhang, X., Jiang, H., Lu, W., Pan, J., Hu, J., Guo, L., Zeng, D., and Xue, D. (2015). Identification of quantitative trait loci associated with tolerance to low potassium and related ions concentrations at seedling stage in rice (Oryza sativa L.). Plant Growth Regul 77, 157–166.

    Article  CAS  Google Scholar 

  • Gu, R., Chen, F., Long, L., Cai, H., Liu, Z., Yang, J., Wang, L., Li, H., Li, J., Liu, W., et al. (2016). Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. J Genet Genomics 43, 663–672.

    Article  PubMed  Google Scholar 

  • Guo, Y., Kong, F., Xu, Y., Zhao, Y., Liang, X., Wang, Y., An, D., and Li, S. (2012). QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theor Appl Genet 124, 851–865.

    Article  CAS  PubMed  Google Scholar 

  • Grzebisz, W., Gransee, A., Szczepaniak, W., and Diatta, J. (2013). The effects of potassium fertilization on water-use efficiency in crop plants. J Plant Nutr Soil Sci 176, 355–374.

    Article  CAS  Google Scholar 

  • Hoagland, D.R., and Arnon, D.I. (1950). The water-culture method for growing plants without soil. Calif Agricult Exp Stat Circ 347, 1–32.

    Google Scholar 

  • Kellermeier, F., Chardon, F., and Amtmann, A. (2013). Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol 161, 1421–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, F.M., Guo, Y., Liang, X., Wu, C.H., Wang, Y.Y., Zhao, Y., and Li, S. S. (2013). Potassium (K) effects and QTL mapping for K efficiency traits at seedling and adult stages in wheat. Plant Soil 373, 877–892.

    Article  CAS  Google Scholar 

  • Kunz, H.H., Gierth, M., Herdean, A., Satoh-Cruz, M., Kramer, D.M., Spetea, C., and Schroeder, J.I. (2014). Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proc Natl Acad Sci USA 111, 7480–7485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, P., Chen, F., Cai, H., Liu, J., Pan, Q., Liu, Z., Gu, R., Mi, G., Zhang, F., and Yuan, L. (2015). A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. J Exp Bot 66, 3175–3188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Z.F., Lu, J.W., Pan, Y.H., Li, X.K., Cong, R.H., and Ren, T. (2016). Genotypic variation in photosynthetic limitation responses to K deficiency of Brassica napus is associated with potassium utilisation efficiency. Funct Plant Biol 43.

  • Manavalan, L.P., Prince, S.J., Musket, T.A., Chaky, J., Deshmukh, R., Vuong, T.D., Song, L., Cregan, P.B., Nelson, J.C., Shannon, J.G., et al. (2015). Identification ofnovel QTL governing root architectural traits in an interspecific soybean population. PLoS ONE 10, e0120490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister, R., Rajani, M.S., Ruzicka, D., and Schachtman, D.P. (2014). Challenges of modifying root traits in crops for agriculture. Trends Plant Sci 19, 779–788.

    Article  CAS  PubMed  Google Scholar 

  • Pariasca-Tanaka, J., Chin, J.H., Dramé, K.N., Dalid, C., Heuer, S., and Wissuwa, M. (2014). A novel allele of the P-starvation tolerance gene OsPSTOL1 from African rice (Oryza glaberrima Steud) and its distribution in the genus Oryza. Theor Appl Genet 127, 1387–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pestsova, E., Lichtblau, D., Wever, C., Presterl, T., Bolduan, T., Ouzunova, M., and Westhoff, P. (2016). QTL mapping of seedling root traits associated with nitrogen and water use efficiency in maize. Euphytica 209, 585–602.

    Article  CAS  Google Scholar 

  • Pettigrew, W.T. (2008). Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plantarum 133, 670–681.

    Article  CAS  Google Scholar 

  • Rengel, Z., and Damon, P.M. (2008) Crops and genotypes differ in efficiency of potassium uptake and use. Physiol Plantarum 133, 624–636.

    Article  CAS  Google Scholar 

  • Ren, T., Lu, J., Li, H., Zou, J., Xu, H., Liu, X., and Li, X. (2013). Potassium-fertilizer management in winter oilseed-rape production in China. J Plant Nutr Soil Sci 176, 429–440.

    Article  CAS  Google Scholar 

  • Remy, E., Cabrito, T.R., Baster, P., Batista, R.A., Teixeira, M.C., Friml, J., Sá-Correia, I., and Duque, P. (2013). A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell 25, 901–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigas, S., Ditengou, F.A., Ljung, K., Daras, G., Tietz, O., Palme, K., and Hatzopoulos, P. (2013). Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. New Phytol 197, 1130–1141.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, E.D., and Benfey, P.N. (2015). Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotech 32, 93–98.

    Article  CAS  PubMed  Google Scholar 

  • Römheld, V., and Kirkby, E.A. (2010). Research on potassium in agriculture: needs and prospects. Plant Soil 335, 155–180.

    Article  CAS  Google Scholar 

  • Salvi, S., Giuliani, S., Ricciolini, C., Carraro, N., Maccaferri, M., Presterl, T., Ouzunova, M., and Tuberosa, R. (2016). Two major quantitative trait loci controlling the number of seminal roots in maize co-map with the root developmental genes rtcs and rum1. J Exp Bot 67, 1149–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, J., Li, R., Qiu, D., Jiang, C., Long, Y., Morgan, C., Bancroft, I., Zhao, J., and Meng, J. (2009). Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182, 851–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, L., Shi, T., Broadley, M.R., White, P.J., Long, Y., Meng, J., Xu, F., and Hammond, J.P. (2013). High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Ann Bot 112, 381–389.

    Article  CAS  PubMed  Google Scholar 

  • Shin, R., and Schachtman, D.P. (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101, 8827–8832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, R. (2014). Strategies for improving potassium use efficiency in plants. Mol Cell 37, 575–584.

    Article  CAS  Google Scholar 

  • Szczerba, M.W., Britto, D.T., and Kronzucker, H.J. (2009). K+ transport in plants: Physiology and molecular biology. J Plant Physiol 166, 447–466.

    Article  CAS  PubMed  Google Scholar 

  • Uga., Y., Kazuhiko, S., and Satoshi, O. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45, 1097–1102.

    Article  CAS  PubMed  Google Scholar 

  • Wakeel, A. (2013). Potassium-sodium interactions in soil and plant under saline-sodic conditions. J Plant Nutr Soil Sci 176, 344–354.

    Article  CAS  Google Scholar 

  • Wang, R.Q. (2016). Chemical analysis of available nutrients (N, P, K) in agricultural soil. In Proceedings of 4th International Conference on Mechanical Materials and Manufacturing Engineering.

  • Wang, Y., and Wu, W.H. (2013). Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64, 451–476.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., and Wu, W.H. (2015). Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Curr Opin Plant Biol 25, 46–52.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Dun, X.L., Shi, J.Q., Wang, X.F., Liu, G.H., and Wang, H.Z. (2017a). Genetic dissection of root morphological traits related to nitrogen use efficiency in Brassica napus L. under two contrasting nitrogen conditions. Front Plant Sci 8, 1709.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J. (2017b). Geneticbasisofroottraitsinrapeseed (Brassica napus L.). Dissertation for Doctoral Degree. (Beijing: Chinese Academy of Agricultural Sciences).

    Google Scholar 

  • Wang, X., Chen, Y., Thomas, C.L., Ding, G., Xu, P., Shi, D., Grandke, F., Jin, K., Cai, H., Xu, F., et al. (2017). Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply. DNA Res 24, 407–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, P.J., and Brown, P.H. (2010). Plant nutrition for sustainable development and global health. Ann Bot 105, 1073–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, P.J., Hammond, J.P., King, G.J., Bowen, H.C., Hayden, R.M., Meacham, M.C., Spracklen, W.P., and Broadley, M.R. (2010). Genetic analysis of potassium use efficiency in Brassica oleracea. Ann Bot 105, 1199–1210.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Ding, G., Shi, L., Feng, J., Xu, F., and Meng, J. (2010). Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121, 181–193.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Shi, J., Wang, X., Liu, G., and Wang, H. (2016). Genetic architecture and mechanism of seed number per pod in rapeseed: elucidated through linkage and near-isogenic line analysis. Sci Rep 6, 24124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, Z.B. (1994). Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Thomas, C.L., Xiang, J., Long, Y., Wang, X., Zou, J., Luo, Z., Ding, G., Cai, H., Graham, N.S., et al. (2016). QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Sci Rep 6, 33113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, D., Hua, Y., Wang, X, et al. (2014). A High-Density Genetic Map Identifies a Novel Major QTL for Boron Efficiency in Oilseed Rape (Brassica napus L.). PLoS One 9, e112089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Li, X., Zhang, S., Wang, J., Yang, X., Tian, J., Hai, Y., and Yang, X. (2014). Mapping QTLs for potassium-deficiency tolerance at the seedling stage in wheat (Triticum aestivum L.). Euphytica 198, 185–198.

    Article  CAS  Google Scholar 

  • Zörb, C., Senbayram, M., and Peiter, E. (2014). Potassium in agriculture—Status and perspectives. J Plant Physiol 171, 656–669.

    Article  CAS  PubMed  Google Scholar 

  • Zou, J., Lu, J., Li, Y., and Li, X. (2011). Regional evaluation of winter rapeseed response to K fertilization, K use efficiency, and critical level of soil K in the Yangtze River Valley. Agric Sci China 10, 911–920.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFD0100200), the Natural Foundation of Hubei Province (2018CFB246), the National Natural Science Foundation of China (31501820), Rapeseed Industry Technology System (CARS-13), and the Agricultural Science and Technology Innovation Project (CAAS-ASTIP-2013-OCRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanzhong Wang.

Electronic supplementary material

11427_2018_9503_MOESM1_ESM.docx

Figure S1 Phenotypic differences in the response of the two parents Zhongshuang11 and No. 73290 to K deficiency. (A) The images of Zhongshuang11 and No. 73290 from a test under seven K concentrations at the five-leaf stage. (B) Comparison of new leaves between Zhongshuang11 and No. 73290 under 6, 0.1 and 0.05 mM concentrations of K. (C) Differences in shoot fresh weight (SFW) between Zhongshuang11 and No. 73290.

11427_2018_9503_MOESM2_ESM.xls

Table S1 The summary of the 109 identified significant QTLs for all investigated traits across the three repetitions under the HK and LH conditions. Among these, data from E1 and E3 experiments under the HK treatment was equal to data from E1 and E3 experiments under HN (high nitrogen) treatment in Wang et al. (2017).

TABLE S2

. The summary of 61 significant QTLs integrated into 9 stable QTLs (sQTLs).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dun, X., Shi, J., Liu, H. et al. Genetic dissection of root morphological traits as related to potassium use efficiency in rapeseed under two contrasting potassium levels by hydroponics. Sci. China Life Sci. 62, 746–757 (2019). https://doi.org/10.1007/s11427-018-9503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9503-x

Navigation