Advertisement

Science China Life Sciences

, Volume 62, Issue 8, pp 1003–1018 | Cite as

Divergence, evolution and adaptation in ray-finned fish genomes

  • Chao Bian
  • Yu Huang
  • Jia Li
  • Xinxin You
  • Yunhai Yi
  • Wei GeEmail author
  • Qiong ShiEmail author
Review

Abstract

With the rapid development of next-generation sequencing technologies and bioinformatics, over 50 ray-finned fish genomes by far have been sequenced with high quality. The genomic work provides abundant genetic resources for deep understanding of divergence, evolution and adaptation in the fish genomes. They are also instructive for identification of candidate genes for functional verification, molecular breeding, and development of novel marine drugs. As an example of other omics data, the Fish-T1K project generated a big database of fish transcriptomes to integrate with these published fish genomes for potential applications. In this review, we highlight the above-mentioned recent investigations and core topics on the ray-finned fish genome research, with a main goal to obtain a deeper understanding of fish biology for theoretical and practical applications.

ray-finned fish genome transcriptome application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Shenzhen Special Program for Development of Emerging Strategic Industries (JSGG20170412153411369) and Shenzhen Special Program for Upgrading Key Links to Strategies for the Emerging and Future Industries (20170428173357698).

References

  1. Aanes, H., Winata, C.L., Lin, C.H., Chen, J.P., Srinivasan, K.G., Lee, S.G. P., Lim, A.Y.M., Hajan, H.S., Collas, P., Bourque, G., et al. (2011). Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res 21, 1328–1338.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahnelt, H. (2018). Imprecise naming: the anadromous and the sea spawning threespine stickleback should be discriminated by names. Biologia 73, 389–392.CrossRefGoogle Scholar
  3. Alexandrou, M.A., Swartz, B.A., Matzke, N.J., and Oakley, T.H. (2013). Genome duplication and multiple evolutionary origins of complex migratory behavior in Salmonidae. Mol Phylogenet Evol 69, 514–523.CrossRefGoogle Scholar
  4. Alfaro, M.E. (2018). Resolving the ray-finned fish tree of life. Proc Natl Acad Sci USA 115, 6107–6109.CrossRefGoogle Scholar
  5. Amores, A., Force, A., Yan, Y.L., Joly, L., Amemiya, C., Fritz, A., Ho, R. K., Langeland, J., Prince, V., Wang, Y.L., et al. (1998). Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711–1714.CrossRefGoogle Scholar
  6. Ao, J., Mu, Y., Xiang, L.X., Fan, D.D., Feng, M.J., Zhang, S., Shi, Q., Zhu, L.Y., Li, T., Ding, Y., et al. (2015). Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genet 11, e1005118.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aparicio, S., Chapman, J., Stupka, E., Putnam, N., Chia, J.M., Dehal, P., Christoffels, A., Rash, S., Hoon, S., Smit, A., et al. (2002). Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297, 1301–1310.CrossRefGoogle Scholar
  8. Austin, C.M., Tan, M.H., Croft, L.J., Hammer, M.P., and Gan, H.M. (2015). Whole genome sequencing of the Asian arowana (Scleropages formosus) provides insights into the evolution of ray-finned fishes. Genome Biol Evol 7, 2885–2895.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barrett, R.D.H., Rogers, S.M., and Schluter, D. (2008). Natural selection on a major armor gene in threespine stickleback. Science 322, 255–257.CrossRefGoogle Scholar
  10. Berthelot, C., Brunet, F., Chalopin, D., Juanchich, A., Bernard, M., Noël, B., Bento, P., Da Silva, C., Labadie, K., Alberti, A., et al. (2014). The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 5, 3657.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bian, C., Hu, Y., Ravi, V., Kuznetsova, I.S., Shen, X., Mu, X., Sun, Y., You, X., Li, J., Li, X., et al. (2016). The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci Rep 6, 24501.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bilyk, K.T., and Cheng, C.H.C. (2013). Model of gene expression in extreme cold - reference transcriptome for the high-Antarctic cryopelagic notothenioid fish Pagothenia borchgrevinki. BMC Genomics 14, 634.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Braasch, I., Brunet, F., Volff, J.N., and Schartl, M. (2009). Pigmentation pathway evolution after whole-genome duplication in fish. Genome Biol Evol 1, 479–493.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., et al. (2016). Erratum: Corrigendum: The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet 48, 700.CrossRefGoogle Scholar
  15. Brawand, D., Wagner, C.E., Li, Y.I., Malinsky, M., Keller, I., Fan, S., Simakov, O., Ng, A.Y., Lim, Z.W., Bezault, E., et al. (2014). The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Byrne, A., Beaudin, A.E., Olsen, H.E., Jain, M., Cole, C., Palmer, T., DuBois, R.M., Forsberg, E.C., Akeson, M., and Vollmers, C. (2017). Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun 8, 16027.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Carmona, S.J., Teichmann, S.A., Ferreira, L., Macaulay, I.C., Stubbington, M.J.T., Cvejic, A., and Gfeller, D. (2017). Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of vertebrate immune cell types. Genome Res 27, 451–461.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Carruthers, M., Yurchenko, A.A., Augley, J.J., Adams, C.E., Herzyk, P., and Elmer, K.R. (2018). De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species. BMC Genomics 19, 32.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Casewell, N.R., Huttley, G.A., and Wüster, W. (2012). Dynamic evolution of venom proteins in squamate reptiles. Nat Commun 3, 1066.CrossRefGoogle Scholar
  20. Chen, S., Zhang, G., Shao, C., Huang, Q., Liu, G., Zhang, P., Song, W., An, N., Chalopin, D., Volff, J.N., et al. (2014). Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 46, 253–260.CrossRefGoogle Scholar
  21. Chen, X., Zhong, L., Bian, C., Xu, P., Qiu, Y., You, X., Zhang, S., Huang, Y., Li, J., Wang, M., et al. (2016). High-quality genome assembly of channel catfish, Ictalurus punctatus. Gigascience 5, 39.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chen, Z., Cheng, C.H.C., Zhang, J., Cao, L., Chen, L., Zhou, L., Jin, Y., Ye, H., Deng, C., Dai, Z., et al. (2008). Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proc Natl Acad Sci USA 105, 12944–12949.CrossRefGoogle Scholar
  23. Chinchar, V.G., Bryan, L., Silphadaung, U., Noga, E., Wade, D., and Rollins-Smith, L. (2004). Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology 323, 268–275.CrossRefGoogle Scholar
  24. Chinen, A., Matsumoto, Y., and Kawamura, S. (2005). Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation. Mol Biol Evol 22, 1001–1010.CrossRefGoogle Scholar
  25. Christoffels, A., Koh, E.G.L., Chia, J.M., Brenner, S., Aparicio, S., and Venkatesh, B. (2004). Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21, 1146–1151.CrossRefGoogle Scholar
  26. Collins, J.E., White, S., Searle, S.M.J., and Stemple, D.L. (2012). Incorporating RNA-seq data into the zebrafish Ensembl genebuild. Genome Res 22, 2067–2078.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Colosimo, P.F., Hosemann, K.E., Balabhadra, S., Villarreal, G., Dickson, M., Grimwood, J., Schmutz, J., Myers, R.M., Schluter, D., and Kingsley, D.M. (2005). Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307, 1928–1933.CrossRefGoogle Scholar
  28. Coppe, A., Agostini, C., Marino, I.A.M., Zane, L., Bargelloni, L., Bortoluzzi, S., and Patarnello, T. (2013). Genome evolution in the cold: Antarctic icefish muscle transcriptome reveals selective duplications increasing mitochondrial function. Genome Biol Evol 5, 45–60.CrossRefGoogle Scholar
  29. Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., de Los Campos, G., Burgueño, J., González-Camacho, J.M., Pérez-Elizalde, S., Beyene, Y., et al. (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22, 961–975.CrossRefGoogle Scholar
  30. Day, J.J. (2006). Fishes of the world, 4th edition. Fish Fisheries 7, 334.CrossRefGoogle Scholar
  31. Deamer, D., Akeson, M., and Branton, D. (2016). Three decades of nanopore sequencing. Nat Biotechnol 34, 518–524.CrossRefGoogle Scholar
  32. Dehal, P., and Boore, J.L. (2005). Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3, e314.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Detrich, H.W., Stuart, A., Schoenborn, M., Parker, S.K., Methé, B.A., and Amemiya, C.T. (2010). Genome enablement of the notothenioidei: genome size estimates from 11 species and BAC libraries from 2 representative taxa. J Exp Zool 314B, 369–381.CrossRefGoogle Scholar
  34. Domingos, J.A., Zenger, K.R., and Jerry, D.R. (2015). Whole-genome shotgun sequence assembly enables rapid gene characterization in the tropical fish barramundi, Lates calcarifer. Anim Genet 46, 468–469.CrossRefGoogle Scholar
  35. Don, E.K., de Jong-Curtain, T.A., Doggett, K., Hall, T.E., Heng, B., Badrock, A.P., Winnick, C., Nicholson, G.A., Guillemin, G.J., Currie, P. D., et al. (2016). Genetic basis of hindlimb loss in a naturally occurring vertebrate model. Biol Open 5, 359–366.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., et al. (2009). Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138.CrossRefGoogle Scholar
  37. Feldkaemper, M., and Schaeffel, F. (2013). An updated view on the role of dopamine in myopia. Exp Eye Res 114, 106–119.CrossRefGoogle Scholar
  38. Fraser, B.A., Künstner, A., Reznick, D.N., Dreyer, C., and Weigel, D. (2015). Population genomics of natural and experimental populations of guppies (Poecilia reticulata). Mol Ecol 24, 389–408.CrossRefGoogle Scholar
  39. Froese, R., and Pauly, D. (2011). FishBase. In World Wide Web electronic publication www.fishbase.org ver 08/2012 (2011).
  40. Gallant, J.R., Traeger, L.L., Volkening, J.D., Moffett, H., Chen, P.H., Novina, C.D., Phillips, G.N., Jr., Anand, R., Wells, G.B., Pinch, M., et al. (2014). Nonhuman genetics. Genomic basis for the convergent evolution of electric organs. Science 344, 1522–1525.PubMedGoogle Scholar
  41. Genomic Resources Development Consortium, Alvarez, P., Arthofer, W., Coelho, M.M., Conklin, D., Estonba, A., Grosso, A.R., Helyar, S.J., Langa, J., Machado, M.P., et al. (2015). Genomic Resources Notes Accepted 1 June 2015–31 July 2015. Mol Ecol Resour 15, 1510–1512.CrossRefGoogle Scholar
  42. Glasauer, S.M.K., and Neuhauss, S.C.F. (2014). Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics 289, 1045–1060.CrossRefGoogle Scholar
  43. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29, 644–652.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Guan, L., Chi, W., Xiao, W., Chen, L., and He, S. (2014). Analysis of hypoxia-inducible factor alpha polyploidization reveals adaptation to Tibetan Plateau in the evolution of schizothoracine fish. BMC Evol Biol 14, 192.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Gui, J., Liu, B., Cao, G., Lipchik, A.M., Perez, M., Dekan, Z., Mobli, M., Daly, N.L., Alewood, P.F., Parker, L.L., et al. (2014). A tarantula-venom peptide antagonizes the TRPA1 nociceptor ion channel by binding to the S1-S4 gating domain. Curr Biol 24, 473–483.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Harel, I., Benayoun, B.A., Machado, B., Singh, P.P., Hu, C.K., Pech, M.F., Valenzano, D.R., Zhang, E., Sharp, S.C., Artandi, S.E., et al. (2015). A platform for rapid exploration ofaging and diseases in a naturally shortlived vertebrate. Cell 160, 1013–1026.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hattori, R.S., Murai, Y., Oura, M., Masuda, S., Majhi, S.K., Sakamoto, T., Fernandino, J.I., Somoza, G.M., Yokota, M., and Strüssmann, C.A. (2012). A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA 109, 2955–2959.CrossRefGoogle Scholar
  48. Hedges, S.B., and Kumar, S. (2009). Discovering the timetree of life. In The Timetree of Life. S.B. Hedges, and S. Kumar, eds. (New York: Oxford University Press), pp. 3–18.Google Scholar
  49. Henkel, C.V., Dirks, R.P., de Wijze, D.L., Minegishi, Y., Aoyama, J., Jansen, H.J., Turner, B., Knudsen, B., Bundgaard, M., Hvam, K.L., et al. (2012). First draft genome sequence of the Japanese eel, Anguilla japonica. Gene 511, 195–201.CrossRefGoogle Scholar
  50. Hohenlohe, P.A., Bassham, S., Etter, P.D., Stiffler, N., Johnson, E.A., and Cresko, W.A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6, e1000862.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hubert, S., Higgins, B., Borza, T., and Bowman, S. (2010). Development of a SNP resource and a genetic linkage map for Atlantic cod (Gadus morhua). BMC Genomics 11, 191.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hughes, L.C., Ortí, G., Huang, Y., Sun, Y., Baldwin, C.C., Thompson, A. W., Arcila, D., Betancur R.R., Li, C., Becker, L., et al. (2018). Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc Natl Acad Sci USA 115, 6249–6254.CrossRefGoogle Scholar
  54. Hurley, I.A., Mueller, R.L., Dunn, K.A., Schmidt, E.J., Friedman, M., Ho, R.K., Prince, V.E., Yang, Z., Thomas, M.G., and Coates, M.I. (2007). A new time-scale for ray-finned fish evolution. Proc R Soc B-Biol Sci 274, 489–498.CrossRefGoogle Scholar
  55. Huth, T.J., and Place, S.P. (2016). Transcriptome wide analyses reveal a sustained cellular stress response in the gill tissue of Trematomus bernacchii after acclimation to multiple stressors. BMC Genomics 17, 127.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Innan, H., and Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11, 97–108.CrossRefGoogle Scholar
  57. Jaillon, O., Aury, J.M., Brunet, F., Petit, J.L., Stange-Thomann, N., Mauceli, E., Bouneau, L., Fischer, C., Ozouf-Costaz, C., Bernot, A., et al. (2004). Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946–957.CrossRefGoogle Scholar
  58. Jones, F.C., Brown, C., Pemberton, J.M., and Braithwaite, V.A. (2006). Reproductive isolation in a threespine stickleback hybrid zone. J Evol Biol 19, 1531–1544.CrossRefGoogle Scholar
  59. Jones, F.C., Grabherr, M.G., Chan, Y.F., Russell, P., Mauceli, E., Johnson, J., Swofford, R., Pirun, M., Zody, M.C., White, S., et al. (2012). The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kasahara, M., Naruse, K., Sasaki, S., Nakatani, Y., Qu, W., Ahsan, B., Yamada, T., Nagayasu, Y., Doi, K., Kasai, Y., et al. (2007). The medaka draft genome and insights into vertebrate genome evolution. Nature 447, 714–719.CrossRefGoogle Scholar
  61. Kawaguchi, M., Yasumasu, S., Shimizu, A., Kudo, N., Sano, K., Iuchi, I., and Nishida, M. (2013). Adaptive evolution of fish hatching enzyme: one amino acid substitution results in differential salt dependency of the enzyme. J Exp Biol 216, 1609–1615.CrossRefGoogle Scholar
  62. Kelley, J.L., Yee, M.C., Brown, A.P., Richardson, R.R., Tatarenkov, A., Lee, C.C., Harkins, T.T., Bustamante, C.D., and Earley, R.L. (2016). The genome of the self-fertilizing mangrove rivulus fish, Kryptolebias marmoratus: A model for studying phenotypic plasticity and adaptations to extreme environments. Genome Biol Evol 8, 2145–2154.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kettleborough, R.N.W., Busch-Nentwich, E.M., Harvey, S.A., Dooley, C. M., de Bruijn, E., van Eeden, F., Sealy, I., White, R.J., Herd, C., Nijman, I.J., et al. (2013). A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496, 494–497.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kim, J.B., Porreca, G.J., Song, L., Greenway, S.C., Gorham, J.M., Church, G.M., Seidman, C.E., and Seidman, J.G. (2007). Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science 316, 1481–1484.CrossRefGoogle Scholar
  65. Kodzius, R., Kojima, M., Nishiyori, H., Nakamura, M., Fukuda, S., Tagami, M., Sasaki, D., Imamura, K., Kai, C., Harbers, M., et al. (2006). CAGE: cap analysis of gene expression. Nat Methods 3, 211–222.CrossRefGoogle Scholar
  66. Laranjeiro, R., and Whitmore, D. (2014). Transcription factors involved in retinogenesis are co-opted by the circadian clock following photoreceptor differentiation. Development 141, 2644–2656.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Li, J., Bian, C., Hu, Y., Mu, X., Shen, X., Ravi, V., Kuznetsova, I.S., Sun, Y., You, X., Qiu, Y., et al. (2016). A chromosome-level genome assembly of the Asian arowana, Scleropages formosus. Sci Data 3, 160105.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Li, J., You, X., Bian, C., Yu, H., Coon, S.L., and Shi, Q. (2015a). Molecular evolution of aralkylamine N-acetyltransferase in fish: A genomic survey. Int J Mol Sci 17, 51.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Li, M., Sun, Y., Zhao, J., Shi, H., Zeng, S., Ye, K., Jiang, D., Zhou, L., Sun, L., Tao, W., et al. (2015b). A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia, Oreochromis niloticus. PLoS Genet 11, e1005678.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Li, M., and Wang, D. (2017). Gene editing nuclease and its application in tilapia. Sci Bull 62, 165–173.CrossRefGoogle Scholar
  71. Li, X.Y., and Gui, J.F. (2018a). Diverse and variable sex determination mechanisms in vertebrates. Sci China Life Sci 61, 1503–1514.CrossRefGoogle Scholar
  72. Li, X.Y., and Gui, J.F. (2018b). An epigenetic regulatory switch controlling temperature-dependent sex determination in vertebrates. Sci China Life Sci 61, 996–998.CrossRefGoogle Scholar
  73. Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lien, S., Koop, B.F., Sandve, S.R., Miller, J.R., Kent, M.P., Nome, T., Hvidsten, T.R., Leong, J.S., Minkley, D.R., Zimin, A., et al. (2016). The Atlantic salmon genome provides insights into rediploidization. Nature 533, 200–205.CrossRefGoogle Scholar
  75. Lin, J.J., Wang, F. Y., Li, W.H., and Wang, T. Y. (2017). The rises and falls of opsin genes in 59 ray-finned fish genomes and their implications for environmental adaptation. Sci Rep 7, 15568.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Lin, Q., Fan, S., Zhang, Y., Xu, M., Zhang, H., Yang, Y., Lee, A.P., Woltering, J.M., Ravi, V., Gunter, H.M., et al. (2016). The seahorse genome and the evolution of its specialized morphology. Nature 540, 395–399.CrossRefGoogle Scholar
  77. Lin, Q., Qiu, Y., Gu, R., Xu, M., Li, J., Bian, C., Zhang, H., Qin, G., Zhang, Y., Luo, W., et al. (2017). Draft genome of the lined seahorse, Hippocampus erectus. Gigascience 6, 1–6.PubMedPubMedCentralGoogle Scholar
  78. Liu, K., Xu, D., Li, J., Bian, C., Duan, J., Zhou, Y., Zhang, M., You, X., You, Y., Chen, J., et al. (2017). Whole genome sequencing of Chinese clearhead icefish, Protosalanx hyalocranius. Gigascience 6, 1–6.PubMedPubMedCentralGoogle Scholar
  79. Liu, S., Zhang, Y., Zhou, Z., Waldbieser, G., Sun, F., Lu, J., Zhang, J., Jiang, Y., Zhang, H., Wang, X., et al. (2012). Efficient assembly and annotation of the transcriptome of catfish by RNA-Seq analysis of a doubled haploid homozygote. BMC Genomics 13, 595.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Liu, Y., Xu, P., Xu, J., Huang, Y., Liu, Y., Fang, H., Hu, Y., You, X., Bian, C., Sun, M., et al. (2017). China is initiating the Aquatic 10-100-1,000 Genomics Program. Sci China Life Sci 60, 329–332.CrossRefGoogle Scholar
  81. Liu, Z., Liu, S., Yao, J., Bao, L., Zhang, J., Li, Y., Jiang, C., Sun, L., Wang, R., Zhang, Y., et al. (2016). The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun 7, 11757.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Lopez, M.E., Neira, R., and Yanez, J.M. (2014). Applications in the search for genomic selection signatures in fish. Front Genet 5, 458.PubMedGoogle Scholar
  83. Lynch, M., and Force, A. (2000). The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459–473.PubMedPubMedCentralGoogle Scholar
  84. Ma, X., Dai, W., Kang, J., Yang, L., and He, S. (2015). Comprehensive transcriptome analysis of six catfish species from an altitude gradient reveals adaptive evolution in Tibetan fishes. G3 6, 141–148.CrossRefGoogle Scholar
  85. Manzon, L.A. (2002). The role of prolactin in fish osmoregulation: a review. Gen Comp Endocrinol 125, 291–310.CrossRefGoogle Scholar
  86. Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., and Gilad, Y. (2008). RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18, 1509–1517.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Martinez Barrio, A., Lamichhaney, S., Fan, G., Rafati, N., Pettersson, M., Zhang, H., Dainat, J., Ekman, D., Hoppner, M., Jern, P., et al. (2016). The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. Elife 5.Google Scholar
  88. Masso-Silva, J.A., and Diamond, G. (2014). Antimicrobial peptides from fish. Pharmaceuticals 7, 265–310.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., Morrey, C.E., Shibata, N., Asakawa, S., Shimizu, N., et al. (2002). DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559–563.CrossRefGoogle Scholar
  90. Matsumura, H., Kruger, D., Kahl, G., and Terauchi, R. (2008). SuperSAGE: a modern platform for genome-wide quantitative transcript profiling. Curr Pharm Biotechnol 9, 368–374.CrossRefGoogle Scholar
  91. McGaugh, S.E., Gross, J.B., Aken, B., Blin, M., Borowsky, R., Chalopin, D., Hinaux, H., Jeffery, W.R., Keene, A., Ma, L., et al. (2014). The cavefish genome reveals candidate genes for eye loss. Nat Commun 5, 5307.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Mei, J., and Gui, J.F. (2015). Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Sci China Life Sci 58, 124–136.CrossRefGoogle Scholar
  93. Murdy, E.O. (1989). A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobiidae: Oxudercinae) (Australian Museum), pp. 1–93.Google Scholar
  94. Nakamura, Y., Mori, K., Saitoh, K., Oshima, K., Mekuchi, M., Sugaya, T., Shigenobu, Y., Ojima, N., Muta, S., Fujiwara, A., et al. (2013). Evolutionary changes ofmultiple visual pigment genes in the complete genome of Pacific bluefin tuna. Proc Natl Acad Sci USA 110, 11061–11066.CrossRefGoogle Scholar
  95. Near, T.J., Eytan, R.I., Dornburg, A., Kuhn, K.L., Moore, J.A., Davis, M.P., Wainwright, P.C., Friedman, M., and Smith, W.L. (2012). Resolution of ray-finned fish phylogeny and timing ofdiversification. Proc Natl Acad Sci USA 109, 13698–13703.CrossRefGoogle Scholar
  96. Noga, E.J., and Silphaduang, U. (2003). Piscidins: a novel family ofpeptide antibiotics from fish. Drug News Perspect 16, 87–92.CrossRefGoogle Scholar
  97. Nudelman, G., Frasca, A., Kent, B., Sadler, K.C., Sealfon, S.C., Walsh, M. J., and Zaslavsky, E. (2018). High resolution annotation of zebrafish transcriptome using long-read sequencing. Genome Res 28, 1415–1425.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Otto, S.P., and Whitton, J. (2000). Polyploid incidence and evolution. Annu Rev Genet 34, 401–437.CrossRefGoogle Scholar
  99. Palaiokostas, C., Bekaert, M., Khan, M.G.Q., Taggart, J.B., Gharbi, K., McAndrew, B.J., and Penman, D.J. (2015). A novel sex-determining QTL in Nile tilapia (Oreochromis niloticus). BMC Genomics 16, 171.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Pan, H., Yu, H., Ravi, V., Li, C., Lee, A.P., Lian, M.M., Tay, B.H., Brenner, S., Wang, J., Yang, H., et al. (2016). The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate. Gigascience 5, 36.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Patton, E.E., Mathers, M.E., and Schartl, M. (2011). Generating and analyzing fish models of melanoma. Methods Cell Biol 105, 339–366.CrossRefGoogle Scholar
  102. Pauli, A., Valen, E., Lin, M.F., Garber, M., Vastenhouw, N.L., Levin, J.Z., Fan, L., Sandelin, A., Rinn, J.L., Regev, A., et al. (2012). Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22, 577–591.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Picelli, S., Faridani, O.R., Björklund, A.K., Winberg, G., Sagasser, S., and Sandberg, R. (2014). Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9, 171–181.CrossRefGoogle Scholar
  104. Pope, E.C., Hays, G.C., Thys, T.M., Doyle, T.K., Sims, D.W., Queiroz, N., Hobson, V.J., Kubicek, L., and Houghton, J.D.R. (2010). The biology and ecology of the ocean sunfish Mola mola: a review of current knowledge and future research perspectives. Rev Fish Biol Fisheries 20, 471–487.CrossRefGoogle Scholar
  105. Postlethwait, J.H., Woods, I.G., Ngo-Hazelett, P., Yan, Y.L., Kelly, P.D., Chu, F., Huang, H., Hill-Force, A., and Talbot, W.S. (2000). Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10, 1890–1902.CrossRefGoogle Scholar
  106. Prohaska, S.J., and Stadler, P.F. (2004). The duplication of the Hox gene clusters in teleost fishes. Theor Biosci 123, 89–110.CrossRefGoogle Scholar
  107. Rajanbabu, V., and Chen, J.Y. (2011). Applications of antimicrobial peptides from fish and perspectives for the future. Peptides 32, 415–420.CrossRefGoogle Scholar
  108. Reitzel, A.M., Karchner, S.I., Franks, D.G., Evans, B.R., Nacci, D., Champlin, D., Vieira, V.M., and Hahn, M.E. (2014). Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats. BMC Evol Biol 14, 6.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Rennison, D.J., Owens, G.L., and Taylor, J.S. (2012). Opsin gene duplication and divergence in ray-finned fish. Mol Phylogenet Evol 62, 986–1008.CrossRefGoogle Scholar
  110. Rhoads, A., and Au, K.F. (2015). PacBio sequencing and its applications. Genom Proteom BioInf 13, 278–289.CrossRefGoogle Scholar
  111. Rondeau, E.B., Minkley, D.R., Leong, J.S., Messmer, A.M., Jantzen, J.R., von Schalburg, K.R., Lemon, C., Bird, N.H., and Koop, B.F. (2014). The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS ONE 9, e102089.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Salem, M., Vallejo, R.L., Leeds, T.D., Palti, Y., Liu, S., Sabbagh, A., Rexroad, C.E., and Yao, J. (2012). RNA-Seq identifies SNP markers for growth traits in rainbow trout. PLoS ONE 7, e36264.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Schartl, M., Walter, R.B., Shen, Y., Garcia, T., Catchen, J., Amores, A., Braasch, I., Chalopin, D., Volff, J.N., Lesch, K.P., et al. (2013). The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet 45, 567–572.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.CrossRefGoogle Scholar
  115. Shao, C., Bao, B., Xie, Z., Chen, X., Li, B., Jia, X., Yao, Q., Ortí, G., Li, W., Li, X., et al. (2017). The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry. Nat Genet 49, 119–124.CrossRefGoogle Scholar
  116. Shi, Y., and Yokoyama, S. (2003). Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proc Natl Acad Sci USA 100, 8308–8313.CrossRefGoogle Scholar
  117. Shin, S.C., Ahn, D.H., Kim, S.J., Pyo, C.W., Lee, H., Kim, M.K., Lee, J., Lee, J.E., Detrich, H.W., Postlethwait, J.H., et al. (2014). The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment. Genome Biol 15, 468.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Shin, S.C., Kim, S.J., Lee, J.K., Ahn, D.H., Kim, M.G., Lee, H., Lee, J., Kim, B.K., and Park, H. (2012). Transcriptomics and comparative analysis of three antarctic notothenioid fishes. PLoS ONE 7, e43762.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Skene, D.J. (1992). N-Acetyltransferase and melatonin in the retina: regulation, function and mode of action. Biochm Soc Trans 20, 312–315.CrossRefGoogle Scholar
  120. Small, C.M., Bassham, S., Catchen, J., Amores, A., Fuiten, A.M., Brown, R.S., Jones, A.G., and Cresko, W.A. (2016). The genome of the Gulf pipefish enables understanding of evolutionary innovations. Genome Biol 17, 258.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Soltis, P.S.S.D.E. (2012). Polyploidy and genome evolution, Chapter 17 (USA: Springer), pp. 341–384.CrossRefGoogle Scholar
  122. Sonesson, A.K., and Meuwissen, T.H.E. (2009). Testing strategies for genomic selection in aquaculture breeding programs. Genet Sel Evol 41, 37.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Star, B., Nederbragt, A.J., Jentoft, S., Grimholt, U., Malmstrøm, M., Gregers, T.F., Rounge, T.B., Paulsen, J., Solbakken, M.H., Sharma, A., et al. (2011). The genome sequence of Atlantic cod reveals a unique immune system. Nature 477, 207–210.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Sudhagar, A., Kumar, G., and El-Matbouli, M. (2018). Transcriptome analysis based on RNA-seq in understanding pathogenic mechanisms of diseases and the immune system of fish: A comprehensive review. Int J Mol Sci 19, 245.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Sun, Y., Guo, C.Y., Wang, D.D., Li, X.F., Xiao, L., Zhang, X., You, X., Shi, Q., Hu, G.J., Fang, C., et al. (2016a). Transcriptome analysis reveals the molecular mechanisms underlying growth superiority in a novel grouper hybrid (Epinephelus fuscogutatus♀ × E. lanceolatus♂). BMC Genet 17, 24.CrossRefPubMedPubMedCentralGoogle Scholar
  126. Sun, Y., Huang, Y., Hu, G., Zhang, X., Ruan, Z., Zhao, X., Guo, C., Tang, Z., Li, X., You, X., et al. (2016b). Comparative transcriptomic study of muscle provides new insights into the growth superiority of a novel grouper hybrid. PLoS ONE 11, e0168802.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Sun, Y., Huang, Y., Li, X., Baldwin, C.C., Zhou, Z., Yan, Z., Crandall, K. A., Zhang, Y., Zhao, X., Wang, M., et al. (2016c). Fish-T1K (Transcriptomes of 1,000 Fishes) Project: large-scale transcriptome data for fish evolution studies. Gigascience 5, 18.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Takehana, Y., Matsuda, M., Myosho, T., Suster, M.L., Kawakami, K., Shin-I, T., Kohara, Y., Kuroki, Y., Toyoda, A., Fujiyama, A., et al. (2014). Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat Commun 5, 4157.CrossRefGoogle Scholar
  129. Taylor, J.S., Braasch, I., Frickey, T., Meyer, A., and Van de Peer, Y. (2003). Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res 13, 382–390.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Tine, M., Kuhl, H., Gagnaire, P.A., Louro, B., Desmarais, E., Martins, R.S. T., Hecht, J., Knaust, F., Belkhir, K., Klages, S., et al. (2014). European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat Commun 5, 5770.CrossRefPubMedPubMedCentralGoogle Scholar
  131. Van Norren, D., and Schellekens, P. (1990). Blue light hazard in rat. Vision Res 30, 1517–1520.CrossRefGoogle Scholar
  132. Vandepoele, K., De Vos, W., Taylor, J.S., Meyer, A., and Van de Peer, Y. (2004). Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA 101, 1638–1643.CrossRefGoogle Scholar
  133. Wang, G., Yang, E., Smith, K.J., Zeng, Y., Ji, G., Connon, R., Fangue, N. A., and Cai, J.J. (2014). Gene expression responses of threespine stickleback to salinity: implications for salt-sensitive hypertension. Front Genet 5, 312.PubMedPubMedCentralGoogle Scholar
  134. Wang, J.T., Li, J.T., Zhang, X.F., and Sun, X.W. (2012). Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio). BMC Genomics 13, 96.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Wang, W., Yi, Q., Ma, L., Zhou, X., Zhao, H., Wang, X., Qi, J., Yu, H., Wang, Z., and Zhang, Q. (2014). Sequencing and characterization of the transcriptome of half-smooth tongue sole (Cynoglossus semilaevis). BMC Genomics 15, 470.CrossRefPubMedPubMedCentralGoogle Scholar
  136. Wang, Y., Lu, Y., Zhang, Y., Ning, Z., Li, Y., Zhao, Q., Lu, H., Huang, R., Xia, X., Feng, Q., et al. (2015). The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat Genet 47, 625–631.CrossRefGoogle Scholar
  137. Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10, 57–63.CrossRefPubMedPubMedCentralGoogle Scholar
  138. Watson, W., and Walker, H.J. (2004). The world’s smallest vertebrate, Schindleria brevipinguis, a new paedomorphic species in the family Schindleriidae (Perciformes: Gobioidei). Rec Aust Mus 56, 139–142.CrossRefGoogle Scholar
  139. Windisch, H.S., Frickenhaus, S., John, U., Knust, R., Pörtner, H.O., and Lucassen, M. (2014). Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum). Mol Ecol 23, 3469–3482.CrossRefGoogle Scholar
  140. Wu, C., Zhang, D., Kan, M., Lv, Z., Zhu, A., Su, Y., Zhou, D., Zhang, J., Zhang, Z., Xu, M., et al. (2014). The draft genome of the large yellow croaker reveals well-developed innate immunity. Nat Commun 5, 5227.CrossRefPubMedPubMedCentralGoogle Scholar
  141. Xia, J.H., Bai, Z., Meng, Z., Zhang, Y., Wang, L., Liu, F., Jing, W., Yi Wan, Z., Li, J., Lin, H., et al. (2015). Signatures of selection in tilapia revealed by whole genome resequencing. Sci Rep 5, 14168.CrossRefGoogle Scholar
  142. Xie, B., Li, X., Lin, Z., Ruan, Z., Wang, M., Liu, J., Tong, T., Li, J., Huang, Y., Wen, B., et al. (2016). Prediction of toxin genes from Chinese yellow catfish based on transcriptomic and proteomic sequencing. Int J Mol Sci 17, 556.CrossRefPubMedPubMedCentralGoogle Scholar
  143. Xu, J., Bian, C., Chen, K., Liu, G., Jiang, Y., Luo, Q., You, X., Peng, W., Li, J., Huang, Y., et al. (2017a). Draft genome of the Northern snakehead, Channa argus. Gigascience 6, 11.Google Scholar
  144. Xu, J., Li, J.T., Jiang, Y., Peng, W., Yao, Z., Chen, B., Jiang, L., Feng, J., Ji, P., Liu, G., et al. (2017b). Genomic basis of adaptive evolution: The survival of Amur Ide (Leuciscus waleckii) in an extremely alkaline environment. Mol Biol Evol 34, 145–159.CrossRefGoogle Scholar
  145. Xu, P., Zhang, X., Wang, X., Li, J., Liu, G., Kuang, Y., Xu, J., Zheng, X., Ren, L., Wang, G., et al. (2014). Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet 46, 1212–1219.CrossRefGoogle Scholar
  146. Xu, T., Xu, G., Che, R., Wang, R., Wang, Y., Li, J., Wang, S., Shu, C., Sun, Y., Liu, T., et al. (2016). The genome of the miiuy croaker reveals well-developed innate immune and sensory systems. Sci Rep 6, 21902.CrossRefPubMedPubMedCentralGoogle Scholar
  147. Yang, J., Chen, X., Bai, J., Fang, D., Qiu, Y., Jiang, W., Yuan, H., Bian, C., Lu, J., He, S., et al. (2016). The Sinocyclocheilus cavefish genome provides insights into cave adaptation. BMC Biol 14, 1.CrossRefPubMedPubMedCentralGoogle Scholar
  148. Yi, Y., You, X., Bian, C., Chen, S., Lv, Z., Qiu, L., and Shi, Q. (2017). High-throughput identification of antimicrobial peptides from amphibious mudskippers. Mar Drugs 15, 364.CrossRefPubMedPubMedCentralGoogle Scholar
  149. Yokoyama, S. (2002). Molecular evolution of color vision in vertebrates. Gene 300, 69–78.CrossRefGoogle Scholar
  150. Yokoyama, S., and Radlwimmer, F.B. (2001). The molecular genetics and evolution of red and green color vision in vertebrates. Genetics 158, 1697–1710.PubMedPubMedCentralGoogle Scholar
  151. Yokoyama, S., Yang, H., and Starmer, W.T. (2008). Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates. Genetics 179, 2037–2043.CrossRefPubMedPubMedCentralGoogle Scholar
  152. You, X., Bian, C., Zan, Q., Xu, X., Liu, X., Chen, J., Wang, J., Qiu, Y., Li, W., Zhang, X., et al. (2014). Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. Nat Commun 5, 5594.CrossRefPubMedPubMedCentralGoogle Scholar
  153. You, X., Sun, M., Li, J., Bian, C., Chen, J., Yi, Y., Yu, H., and Shi, Q. (2018). Mudskippers and their genetic adaptations to an amphibious lifestyle. Animals 8, 24.CrossRefGoogle Scholar
  154. Yu, H., You, X., Li, J., Zhang, X., Zhang, S., Jiang, S., Lin, X., Lin, H.R., Meng, Z., and Shi, Q. (2018). A genome-wide association study on growth traits in orange-spotted grouper (Epinephelus coioides) with RAD-seq genotyping. Sci China Life Sci 61, 934–946.CrossRefGoogle Scholar
  155. Yue, G.H., Liew, W.C., and Orban, L. (2006). The complete mitochondrial genome of a basal teleost, the Asian arowana (Scleropages formosus, Osteoglossidae). BMC Genomics 7, 242.CrossRefPubMedPubMedCentralGoogle Scholar
  156. Yue, G.H., and Wang, L. (2017). Current status of genome sequencing and its applications in aquaculture. Aquaculture 468, 337–347.CrossRefGoogle Scholar
  157. Zhang, S., Li, J., Qin, Q., Liu, W., Bian, C., Yi, Y., Wang, M., Zhong, L., You, X., Tang, S., et al. (2018). Whole-genome sequencing of Chinese yellow catfish provides a valuable genetic resource for high-throughput identification of toxin genes. Toxins 10, 488.CrossRefPubMedPubMedCentralGoogle Scholar
  158. Zhang, Z., Zhang, K., Chen, S., Zhang, Z., Zhang, J., You, X., Bian, C., Xu, J., Jia, C., Qiang, J., et al. (2018). Draft genome of the protandrous Chinese black porgy, Acanthopagrus schlegelii. Gigascience 7.Google Scholar
  159. Ziegman, R., and Alewood, P. (2015). Bioactive components in fish venoms. Toxins 7, 1497–1531.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center of Reproduction, Development and Aging, Faculty of Health SciencesUniversity of MacauTaipa, MacauChina
  2. 2.Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic AnimalsBGI Academy of Marine Sciences, BGI Marine, BGIShenzhenChina
  3. 3.Laboratory of Aquatic Genomics, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina

Personalised recommendations