Skip to main content
Log in

Gain of transcription factor binding sites is associated to changes in the expression signature of human brain and testis and is correlated to genes with higher expression breadth

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The gain of transcription factor binding sites (TFBS) is believed to represent one of the major causes of biological innovation. Here we used strategies based on comparative genomics to identify 21,822 TFBS specific to the human lineage (TFBS-HS), when compared to chimpanzee and gorilla genomes. More than 40% (9,206) of these TFBS-HS are in the vicinity of 1,283 genes. A comparison of the expression pattern of these genes and the corresponding orthologs in chimpanzee and gorilla identified genes differentially expressed in human tissues. These genes show a more divergent expression pattern in the human testis and brain, suggesting a role for positive selection in the fixation of TFBS gains. Genes associated with TFBS-HS were enriched in gene ontology categories related to transcriptional regulation, signaling, differentiation/development and nervous system. Furthermore, genes associated with TFBS-HS present a higher expression breadth when compared to genes in general. This biased distribution is due to a preferential gain of TFBS in genes with higher expression breadth rather than a shift in the expression pattern after the gain of TFBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbiza, L., Gronau, I., Aksoy, B.A., Hubisz, M.J., Gulko, B., Keinan, A., and Siepel, A. (2013). Genome-wide inference of natural selection on human transcription factor binding sites. Nat Genet 45, 723–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brawand, D., Soumillon, M., Necsulea, A., Julien, P., Csárdi, G., Harrigan, P., Weier, M., Liechti, A., Aximu-Petri, A., Kircher, M., et al. (2011). The evolution of gene expression levels in mammalian organs. Nature 478, 343–348.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, F., Amode, M.R., Barrell, D., Beal, K., Billis, K., Brent, S., Carvalho-Silva, D., Clapham, P., Coates, G., Fitzgerald, S., et al. (2015). Ensembl 2015. Nucleic Acids Res 43, D662–D669.

    Article  CAS  PubMed  Google Scholar 

  • Dunham, I., Aldred, S.F., Collins, P.J., Davis, C.A., Doyle, F., Epstein, C. B., Frietze, S., Harrow, J., and Kaul, R. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74.

    Article  CAS  Google Scholar 

  • Enard, W., Khaitovich, P., Klose, J., Zöllner, S., Heissig, F., Giavalisco, P., Nieselt-Struwe, K., Muchmore, E., Varki, A., Ravid, R., et al. (2002). Intra- and interspecific variation in primate gene expression patterns. Science 296, 340–343.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs, T., Gavarini, S., Saunders-Pullman, R., Raymond, D., Ehrlich, M.E., Bressman, S.B., and Ozelius, L.J. (2009). Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat Genet 41, 286–288.

    Article  CAS  PubMed  Google Scholar 

  • Hurst, L.D., Sachenkova, O., Daub, C., Forrest, A.R.R., Huminiecki, L., and Huminiecki, L. (2014). A simple metric of promoter architecture robustly predicts expression breadth of human genes suggesting that most transcription factors are positive regulators. Genome Biol 15, 413.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasowski, M., Grubert, F., Heffelfinger, C., Hariharan, M., Asabere, A., Waszak, S.M., Habegger, L., Rozowsky, J., Shi, M., Urban, A.E., et al. (2010). Variation in transcription factor binding among humans. Science 328, 232–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kent, W.J., Zweig, A.S., Barber, G., Hinrichs, A.S., and Karolchik, D. (2010). BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26, 2204–2207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulikov, A.V., Korostina, V.S., Kulikova, E.A., Fursenko, D.V., Akulov, A. E., Moshkin, M.P., and Prokhortchouk, E.B. (2016). Knockout Zbtb33 gene results in an increased locomotion, exploration and pre-pulse inhibition in mice. Behav Brain Res 297, 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Marnetto, D., Molineris, I., Grassi, E., and Provero, P. (2014). Genomewide identification and characterization of fixed human-specific regulatory regions. Am J Hum Genet 95, 39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, W., Rosenbloom, K., Hardison, R.C., Hou, M., Taylor, J., Raney, B., Burhans, R., King, D.C., Baertsch, R., Blankenberg, D., et al. (2007). 28-Way vertebrate alignment and conservation track in the UCSC Genome Browser. Genome Res 17, 1797–1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni, X., Zhang, Y.E., Nègre, N., Chen, S., Long, M., and White, K.P. (2012). Adaptive evolution and the birth of CTCF binding sites in the Drosophila genome. PLoS Biol 10, e1001420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petryszak, R., Burdett, T., Fiorelli, B., Fonseca, N.A., Gonzalez-Porta, M., Hastings, E., Huber, W., Jupp, S., Keays, M., Kryvych, N., et al. (2014). Expression Atlas update—a database of gene and transcript expression from microarray- and sequencing-based functional genomics experiments. Nucl Acids Res 42, D926–D932.

    Article  CAS  PubMed  Google Scholar 

  • Quinlan, A.R., and Hall, I.M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team. (2013). R: A language and environment for statistical computing. doi: https://doi.org/10.1007/978-3-540-74686-7.

  • Rebeiz, M., Castro, B., Liu, F., Yue, F., and Posakony, J.W. (2012). Ancestral and conserved cis-regulatory architectures in developmental control genes. Dev Biol 362, 282–294.

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro-dos-Santos, A.M., da Silva, V.L., de Souza, J.E.S., and de Souza, S. J. (2015). Populational landscape of INDELs affecting transcription factor-binding sites in humans. BMC Genom 16, 536.

    Article  CAS  Google Scholar 

  • Rosenbloom, K.R., Armstrong, J., Barber, G.P., Casper, J., Clawson, H., Diekhans, M., Dreszer, T.R., Fujita, P.A., Guruvadoo, L., Haeussler, M., et al. (2015). The UCSC Genome Browser database: 2015 update. Nucleic Acids Res 43, D670–D681.

    Article  CAS  PubMed  Google Scholar 

  • Somel, M., Liu, X., Tang, L., Yan, Z., Hu, H., Guo, S., Jiang, X., Zhang, X., Xu, G., Xie, G., et al. (2011). MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates. PLoS Biol 9, e1001214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuğrul, M., Paixão, T., Barton, N.H., and Tkačik, G. (2015). Dynamics of transcription factor binding site evolution. PLoS Genet 11, e1005639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widenius, M., Axmark, D., and DuBois, P. (2002). MySQL reference manual: documentation from the source (Beijing: O’Reilly, Community Press).

    Google Scholar 

  • Wray, G.A. (2007). The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8, 206–216.

    Article  CAS  PubMed  Google Scholar 

  • Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, W., Landback, P., Gschwend, A.R., Shen, B., and Long, M. (2015). New genes drive the evolution of gene interaction networks in the human and mouse genomes. Genome Biol 16, 202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y.E., Landback, P., Vibranovski, M., and Long, M. (2012). New genes expressed in human brains: implications for annotating evolving genomes. Bioessays 34, 982–991.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Jorge E.S. de Souza for discussions on the gene expression analysis. VLS and AMRS were supported by CAPES Ph.D. fellowships. This work was supported by the Ludwig Institute for Cancer Research and by CAPES (23038.004629/2014-19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro José de Souza.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, V.L., dos Santos, A.M.R., Blanco, W. et al. Gain of transcription factor binding sites is associated to changes in the expression signature of human brain and testis and is correlated to genes with higher expression breadth. Sci. China Life Sci. 62, 526–534 (2019). https://doi.org/10.1007/s11427-018-9454-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9454-7

Keywords

Navigation