Skip to main content
Log in

Anti-diabetic vanadyl complexes reduced Alzheimer’s disease pathology independent of amyloid plaque deposition

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Association of Alzheimer’s disease (AD) with cerebral glucose hypometabolism, likely due to impairments of insulin signaling, has been reported recently, with encouraging results when additional insulin is provided to AD patients. Here, we tested the potential effects of the anti-diabetic vanadium, vanadyl (IV) acetylacetonate (VAC), on AD in vitro and in vivo models. The experimental results showed that VAC at sub-micromolar concentrations improved the viability of neural cells with or without increased β-amyloid (Aβ) burden; and in APP/PS1 transgenic mice, VAC treatment (0.1 mmol kg−1 d−1) preserved cognitive function and attenuated neuron loss, but did not reduce brain Aβ plaques. Further studies revealed that VAC attenuated Aβ pathogenesis by (i) activation of the PPARγ-AMPK signal transduction pathway, leading to improved glucose and energy metabolism; (ii) up-regulation of the expression of glucose-regulated protein 75 (Grp75), thus suppressing p53-mediated neuronal apoptosis under Aβ-related stresses; and (iii) decreasing toxic soluble Aβ peptides. Overall, our work suggested that vanadyl complexes may have great potential for effective therapeutic treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adam, A.M.A., Naglah, A.M., Al-Omar, M.A., and Refat, M.S. (2017). Synthesis of a new insulin-mimetic anti-diabetic drug containing vitamin A and vanadium(IV) salt: chemico-biological characterizations. Int J Immunopathol Pharmacol 30, 272–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albuquerque, M.S., Mahar, I., Davoli, M.A., Chabot, J.G., Mechawar, N., Quirion, R., and Krantic, S. (2015). Regional and sub-regional differences in hippocampal GABAergic neuronal vulnerability in the TgCRND8 mouse model of Alzheimer’s disease. Front Aging Neurosci 7, 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aron, L., and Yankner, B.A. (2016). Neurodegenerative disorders: neural synchronization in Alzheimer’s disease. Nature 540, 207–208.

    Article  CAS  PubMed  Google Scholar 

  • Arvanitakis, Z., Schneider, J.A., Wilson, R.S., Li, Y., Arnold, S.E., Wang, Z., and Bennett, D.A. (2006). Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology 67, 1960–1965.

    Article  CAS  PubMed  Google Scholar 

  • Asih, P.R., Tegg, M.L., Sohrabi, H., Carruthers, M., Gandy, S.E., Saad, F., Verdile, G., Ittner, L.M., and Martins, R.N. (2017). Multiple mechanisms linking type 2 diabetes and Alzheimer’s disease: testosterone as a modifier. J Alzheimers Dis 59, 445–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustin, K., Khabbush, A., Williams, S., Eaton, S., Orford, M., Cross, J. H., Heales, S.J.R., Walker, M.C., and Williams, R.S.B. (2018). Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol 17, 84–93.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, M., Goldstein, M., Christmann, M., Becker, H., Heylmann, D., and Kaina, B. (2011). Human monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress. Proc Natl Acad Sci USA 108, 21105–21110.

    Article  PubMed  Google Scholar 

  • Bishayee, A., Waghray, A., Patel, M.A., and Chatterjee, M. (2010). Vanadium in the detection, prevention and treatment of cancer: the in vivo evidence. Cancer Lett 294, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Bomba, M., Ciavardelli, D., Silvestri, E., Canzoniero, L.M., Lattanzio, R., Chiappini, P., Piantelli, M., Di Ilio, C., Consoli, A., and Sensi, S.L. (2013). Exenatide promotes cognitive enhancement and positive brain metabolic changes in PS1-KI mice but has no effects in 3xTg-AD animals. Cell Death Dis 4, e612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borchelt, D.R., Thinakaran, G., Eckman, C.B., Lee, M.K., Davenport, F., Ratovitsky, T., Prada, C.M., Kim, G., Seekins, S., Yager, D., et al. (1996). Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1–42/1–40 ratio in vitro and in vivo. Neuron 17, 1005–1013.

    Article  CAS  Google Scholar 

  • Camilleri, A., Zarb, C., Caruana, M., Ostermeier, U., Ghio, S., Högen, T., Schmidt, F., Giese, A., and Vassallo, N. (2013). Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. Biochim Biophys Acta 1828, 2532–2543.

    Article  CAS  PubMed  Google Scholar 

  • Cardoso, S.M., Santana, I., Swerdlow, R.H., and Oliveira, C.R. (2004). Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Aβ toxicity. J Neurochem 89, 1417–1426.

    Article  CAS  PubMed  Google Scholar 

  • Cascella, R., Evangelisti, E., Bigi, A., Becatti, M., Fiorillo, C., Stefani, M., Chiti, F., and Cecchi, C. (2017). Soluble oligomers require a ganglioside to trigger neuronal calcium overload. J Alzheimers Dis 60, 923–938.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., and Zhong, C. (2013). Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108, 21–43.

    Article  CAS  PubMed  Google Scholar 

  • Cross, D.A.E., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789.

    Article  CAS  Google Scholar 

  • D’Cruz, O.J., and Uckun, F.M. (2002). Metvan: a novel oxovanadium(IV) complex with broad spectrum anticancer activity. Expert Opin Investig Drugs 11, 1829–1836.

    Article  PubMed  Google Scholar 

  • De Felice, F.G. (2013). Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest 123, 531–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Felice, F.G., and Ferreira, S.T. (2014). Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63, 2262–2272.

    Article  PubMed  Google Scholar 

  • Di Carlo, M., Giacomazza, D., Picone, P., Nuzzo, D., and San Biagio, P.L. (2012). Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free Radic Res 46, 1327–1338.

    Article  CAS  PubMed  Google Scholar 

  • Duyckaerts, C., Potier, M.C., and Delatour, B. (2008). Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 115, 5–38.

    Article  Google Scholar 

  • Gao, Z., Zhang, C., Yu, S., Yang, X., and Wang, K. (2011). Vanadyl bisacetylacetonate protects β cells from palmitate-induced cell death through the unfolded protein response pathway. J Biol Inorg Chem 16, 789–798.

    Article  CAS  PubMed  Google Scholar 

  • Glabe, C.G. (2006). Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27, 570–575.

    Article  CAS  PubMed  Google Scholar 

  • Guo, W., and Yang, X. (2015). Vanadium regulates HSP60-induced IL-6 release from RAW264.7 cells in a dose-dependent manner. J Chin Pharm Sci 24, 28–33.

    Google Scholar 

  • Ha, H.J., Kang, D.W., Kim, H.M., Kang, J.M., Ann, J., Hyun, H.J., Lee, J. H., Kim, S.H., Kim, H., Choi, K., et al. (2018). Discovery of an orally bioavailable benzofuran analogue that serves as a β-amyloid aggregation inhibitor for the potential treatment of Alzheimer’s disease. J Med Chem 61, 396–402.

    Article  CAS  PubMed  Google Scholar 

  • Hartl, D., Schuldt, V., Forler, S., Zabel, C., Klose, J., and Rohe, M. (2012). Presymptomatic alterations in energy metabolism and oxidative stress in the APP23 mouse model of Alzheimer disease. J Proteome Res 11, 3295–3304.

    Article  CAS  PubMed  Google Scholar 

  • He, L., Wang, X., Zhao, C., Zhu, D., and Du, W. (2014). Inhibition of human amylin fibril formation by insulin-mimetic vanadium complexes. Metallomics 6, 1087–1096.

    Article  CAS  PubMed  Google Scholar 

  • Honrath, B., Metz, I., Bendridi, N., Rieusset, J., Culmsee, C., and Dolga, A. M. (2017). Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov 3, 17076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, W.C.J., Wildburger, N.C., Haidacher, S.J., Nenov, M.N., Folorunso, O., Singh, A.K., Chesson, B.C., Franklin, W.F., Cortez, I., Sadygov, R. G., et al. (2017). PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer’s disease. Exp Neurol 295, 1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, X., Wang, T., and Jin, F. (2016). Alzheimer’s disease and gut microbiota. Sci China Life Sci 59, 1006–1023.

    Article  CAS  PubMed  Google Scholar 

  • Karki, R., Kodamullil, A.T., and Hofmann-Apitius, M. (2017). Comorbidity analysis between Alzheimer’s disease and type 2 diabetes mellitus (T2DM) based on shared pathways and the role of T2DM drugs. J Alzheimers Dis 60, 721–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul, S.C., Aida, S., Yaguchi, T., Kaur, K., and Wadhwa, R. (2005). Activation of wild type p53 function by its mortalin-binding, cytoplasmically localizing carboxyl terminus peptides. J Biol Chem 280, 39373–39379.

    Article  CAS  PubMed  Google Scholar 

  • Kaul, S.C., Duncan, E.L., Englezou, A., Takano, S., Reddel, R.R., Mitsui, Y., and Wadhwa, R. (1998). Malignant transformation of NIH3T3 cells by overexpression of mot-2 protei. Oncogene 17, 907–911.

    Article  CAS  PubMed  Google Scholar 

  • Kiersztan, A., Winiarska, K., Drozak, J., Przedlacka, M., Wegrzynowicz, M., Fraczyk, T., and Bryla, J. (2004). Differential effects of vanadium, tungsten and molybdenum on inhibition of glucose formation in renal tubules and hepatocytes of control and diabetic rabbits: beneficial action of melatonin and N-acetylcysteine. Mol Cell Biochem 261, 9–21.

    Article  CAS  PubMed  Google Scholar 

  • Koss, D.J., Jones, G., Cranston, A., Gardner, H., Kanaan, N.M., and Platt, B. (2016). Soluble pre-fibrillar tau and β-amyloid species emerge in early human Alzheimer’s disease and track disease progression and cognitive decline. Acta Neuropathol 132, 875–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krejsa, C.M., Nadler, S.G., Esselstyn, J.M., Kavanagh, T.J., Ledbetter, J.A., and Schieven, G.L. (1997). Role of oxidative stress in the action of vanadium phosphotyrosine phosphatase inhibitors. Redox independent activation of NF-kappaB. J Biol Chem 272, 11541–11549.

    CAS  PubMed  Google Scholar 

  • Lei, W.H., Liu, H.X., Zhong, L.J., Yang, X.D., and Wang, K. (2007). Vanadyl ions binding to GroEL (HSP60) and inducing its depolymerization. Chin Sci Bull 52, 2775–2781.

    Article  CAS  Google Scholar 

  • Li, H.M., Niki, T., Taira, T., Iguchi-Ariga, S.M.M., and Ariga, H. (2005). Association of DJ-1 with chaperones and enhanced association and colocalization with mitochondrial Hsp70 by oxidative stress. Free Radical Res 39, 1091–1099.

    Article  CAS  Google Scholar 

  • Li, S.Y.T., Cheng, S.T.W., Zhang, D., and Leung, P.S. (2017). Identification and functional implications of Sodium/Myo-inositol cotransporter 1 in pancreatic β-cells and type 2 diabetes. Diabetes 66, 1258–1271.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Li, H., Zhao, C., Lv, C., Zhong, C., Xin, W., and Zhang, W. (2015). Protective effect of notoginsenoside R1 on an APP/PS1 mouse model of Alzheimer’s disease by up-regulating insulin degrading enzyme and inhibiting abeta accumulation. CNS Neurol Disorders Drug Targets 14, 360–369.

    Article  CAS  Google Scholar 

  • Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Liu, W., Song, X.D., and Zuo, J. (2005). Effect of GRP75/mthsp70/ PBP74/mortalin overexpression on intracellular ATP level, mitochondrial membrane potential and ROS accumulation following glucose deprivation in PC12 cells. Mol Cell Biochem 268, 45–51.

    Article  CAS  PubMed  Google Scholar 

  • Luchsinger, J.A. (2010). Insulin resistance, type 2 diabetes, and AD: cerebrovascular disease or neurodegeneration? Neurology 75, 758–759.

    Article  PubMed  Google Scholar 

  • Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., et al. (2004). ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304, 448–452.

    Article  CAS  PubMed  Google Scholar 

  • Momtaz, S., Hassani, S., Khan, F., Ziaee, M., and Abdollahi, M. (2017). Cinnamon, a promising prospect towards Alzheimer’s disease. Pharmacol Res 130, 241–258.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, C. (2016). Hope for anti-amyloid antibodies surges, yet again. Nat Biotechnol 34, 1082–1083.

    Article  CAS  PubMed  Google Scholar 

  • Mosconi, L. (2013). Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies. Clin Transl Imag 1, 217–233.

    Article  Google Scholar 

  • Niu, X., Xiao, R., Wang, N., Wang, Z., Zhang, Y., Xia, Q., and Yang, X. (2016). The molecular mechanisms and rational design of anti-diabetic vanadium compounds. Curr Topics Med Chem 16, 811–822.

    Article  CAS  Google Scholar 

  • Papasozomenos, S.C., and Shanavas, A. (2002). Testosterone prevents the heat shock-induced overactivation of glycogen synthase kinase-3beta but not of cyclin-dependent kinase 5 and c-Jun NH2-terminal kinase and concomitantly abolishes hyperphosphorylation of tau: implications for Alzheimer’s disease. Proc Natl Acad Sci USA 99, 1140–1145.

    Article  CAS  PubMed  Google Scholar 

  • Peng, J.H., Zhang, C.E., Wei, W., Hong, X.P., Pan, X.P., and Wang, J.Z. (2007). Dehydroevodiamine attenuates tau hyperphosphorylation and spatial memory deficit induced by activation of glycogen synthase kinase-3 in rats. Neuropharmacology 52, 1521–1527.

    Article  CAS  PubMed  Google Scholar 

  • Qin, J., Zhang, X., Wang, Z., Li, J., Zhang, Z., Gao, L., Ren, H., Qian, M., and Du, B. (2017). Presenilin 2 deficiency facilitates Aβ-induced neuroinflammation and injury by upregulating P2X7 expression. Sci China Life Sci 60, 189–201.

    Article  CAS  PubMed  Google Scholar 

  • Rahn, S., Zimmermann, V., Viol, F., Knaack, H., Stemmer, K., Peters, L., Lenk, L., Ungefroren, H., Saur, D., Schäfer, H., et al. (2018). Diabetes as risk factor for pancreatic cancer: hyperglycemia promotes epithelialmesenchymal-transition and stem cell properties in pancreatic ductal epithelial cells. Cancer Lett 415, 129–150.

    Article  CAS  PubMed  Google Scholar 

  • Reiman, E.M. (2016). Alzheimer’s disease: attack on amyloid-β protein. Nature 537, 36–37.

    Article  CAS  PubMed  Google Scholar 

  • Renaud, J., Bournival, J., Zottig, X., and Martinoli, M.G. (2014). Resveratrol protects DAergic PC12 cells from high glucose-induced oxidative stress and apoptosis: effect on p53 and GRP75 localization. Neurotox Res 25, 110–123.

    Article  CAS  PubMed  Google Scholar 

  • Roy, D.S., Arons, A., Mitchell, T.I., Pignatelli, M., Ryan, T.J., and Tonegawa, S. (2016). Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 531, 508–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinsztein, D.C. (2017). RIPK1 promotes inflammation and β-amyloid accumulation in Alzheimer’s disease. Proc Natl Acad Sci USA 114, 10813–10814.

    Article  CAS  PubMed  Google Scholar 

  • Saar Ray, M., Moskovich, O., Iosefson, O., and Fishelson, Z. (2014). Mortalin/ GRP75 binds to complement C9 and plays a role in resistance to complement-dependent cytotoxicity. J Biol Chem 289, 15014–15022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanna, D., Ugone, V., Serra, M., and Garribba, E. (2017). Speciation of potential anti-diabetic vanadium complexes in real serum samples. J Inorg Biochem 173, 52–65.

    Article  CAS  PubMed  Google Scholar 

  • Schoene-Bake, J.C., Keller, S.S., Niehusmann, P., Volmering, E., Elger, C., Deppe, M., and Weber, B. (2014). In vivo mapping of hippocampal subfields in mesial temporal lobe epilepsy: relation to histopathology. Hum Brain Mapp 35, 4718–4728.

    Article  PubMed  Google Scholar 

  • Selenica, M.L., Jensen, H.S., Larsen, A.K., Pedersen, M.L., Helboe, L., Leist, M., and Lotharius, J. (2007). Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of Tau hyperphosphorylation. Br J Pharmacol 152, 959–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sgarbossa, S., Diana, E., Marabello, D., Deagostino, A., Cadamuro, S., Barge, A., Laurenti, E., Gallicchio, M., Boscaro, V., and Ghibaudi, E. (2013). Synthesis, characterization and cell viability test of six vanadyl complexes with acetylacetonate derivatives. J Inorg Biochem 128, 26–37.

    Article  CAS  PubMed  Google Scholar 

  • Shrestha, P., and Klann, E. (2016). Lost memories found. Nature 531, 450–451.

    Article  CAS  PubMed  Google Scholar 

  • Soussi, A., Gaubin, Y., Beau, B., Murat, J.C., Soleilhavoup, J.P., Croute, F., and El Feki, A. (2006). Stress proteins (Hsp72/73, Grp94) expression pattern in rat organs following metavanadate administration. Effect of green tea drinking. Food Chem Toxicol 44, 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  • Strzyz, P. (2017). Synthetic biology: designer cells tackle diabetes. Nat Rev Mol Cell Biol 18, 69.

    Article  CAS  PubMed  Google Scholar 

  • Tai, J., Liu, W., Li, Y., Li, L., and Hölscher, C. (2018). Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer’s disease. Brain Res 1678, 64–74.

    Article  CAS  PubMed  Google Scholar 

  • Tönnies, E., and Trushina, E. (2017). Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57, 1105–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voloboueva, L.A., Duan, M., Ouyang, Y.B., Emery, J.F., Stoy, C., and Giffard, R.G. (2008). Overexpression of mitochondrial Hsp70/Hsp75 protects astrocytes against ischemic injury in vitro. J Cereb Blood Flow Metab 28, 1009–1016.

    Article  CAS  PubMed  Google Scholar 

  • Voorhees, J.R., Remy, M.T., Cintrón-Pérez, C.J., El Rassi, E., Khan, M.Z., Dutca, L.M., Yin, T.C., McDaniel, L.N., Williams, N.S., Brat, D.J., et al. (2017). (−)-P7C3-S243 protects a rat model of Alzheimer’s disease from neuropsychiatric deficits and neurodegeneration without altering amyloid deposition or reactive glia. Biol Psychiatry in press doi: 10.-1016/j.biopsych.2017.10.023.

    Google Scholar 

  • Wadhwa, R., Yaguchi, T., Hasan, M.K., Mitsui, Y., Reddel, R.R., and Kaul, S.C. (2002). Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp Cell Res 274, 246–253.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Yang, R., Gu, J., Yin, X., Jin, N., Xie, S., Wang, Y., Chang, H., Qian, W., Shi, J., et al. (2015). Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging 36, 188–200.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., Huang, M., Zhao, P., and Yang, X. (2013). Vanadyl acetylacetonate upregulates PPARγ and adiponectin expression in differentiated rat adipocytes. J Biol Inorg Chem 18, 623–631.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Ma, R.H., Li, X.C., Zhang, J.Y., Shi, H.R., Wei, W., Luo, D.J., Wang, Q., Wang, J.Z., and Liu, G.P. (2014). Silencing [Formula: see text] rescues Tau pathologies and memory deficits through rescuing PP2A and inhibiting GSK-3beta signaling in human Tau transgenic mice. Front Aging Neurosci 6, 123.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, P., and Yang, X. (2013). Vanadium compounds modulate PPARγ activity primarily by increasing PPARγ protein levels in mouse insulinoma NIT-1 cells. Metallomics 5, 836–843.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, W.Q., and Townsend, M. (2009). Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochim Biophys Acta 1792, 482–496.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zengqiang Yuan at the Institute of Biophysics, Chinese Academy of Sciences for providing the three SH-SY5Y cells and kind assistances in cell culture. This work was supported by National Natural Science Foundation of China (21571006, 21771010), Beijing Municipal Science & Technology Commission (A61120-01) and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA 12040101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang or Xiaoda Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Stewart, T., Zhang, Y. et al. Anti-diabetic vanadyl complexes reduced Alzheimer’s disease pathology independent of amyloid plaque deposition. Sci. China Life Sci. 62, 126–139 (2019). https://doi.org/10.1007/s11427-018-9350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9350-1

Keywords

Navigation