Skip to main content
Log in

Association of TRIMCyp and TRIM5α from assam macaques leads to a functional trade-off between HIV-1 and N-MLV inhibition

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

TRIM5α restricts retroviruses in a species-specific manner. Cyclophilin A was independently retrotransposed into the TRIM5 loci in different species, leading to the generation of antiviral TRIM5-cyclophilin A (TRIMCyp) proteins. Previously, we found that assam macaques express a TRIMCyp chimera (amTRIMCyp), along with a TRIM5α allelic protein (amTRIM5α). Herein, we investigated the antiviral activity of amTRIMCyp and amTRIM5α individually, as well as their interaction and joint effects. amTRIMCyp showed a divergent restriction pattern from amTRIM5α. Although both proteins potently restricted the replication of HIV-1, only amTRIM5α inhibited N-MLV. Remarkably, cellular anti-HIV-1 activity increased when amTRIMCyp and amTRIM5α were coexpressed, indicating a synergistic block of HIV-1 replication. Consistently, PMBCs from heterozygous amTRIM5α/TRIMCyp showed stronger resistance to HIV-1 infection than those from amTRIM5α/TRIM5α homozygotes. The anti-HIV-1 synergistic effect was dependent on the amTRIMCyp-amTRIM5α interaction. In contrast, amTRIMCyp completely abrogated the anti-N-MLV activity mediated by amTRIM5α, showing a dominant-negative effect, indicating that the generation of amTRIMCyp was involved in the trade-off between divergent restriction activities. Our results provide a new paradigm to study functional trade-offs mediated by allelic proteins, a theoretical basis for utilizing animal models with various TRIM5 alleles, as well as novel HIV-1 gene therapy strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battivelli, E., Migraine, J., Lecossier, D., Matsuoka, S., Perez-Bercoff, D., Saragosti, S., Clavel, F., and Hance, A.J. (2011). Modulation of TRIM5a activity in human cells by alternatively spliced TRIM5 isoforms. J Virol 85, 7828–7835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berthoux, L., Sebastian, S., Sayah, D.M., and Luban, J. (2005). Disruption of human TRIM5a antiviral activity by nonhuman primate orthologues. J Virol 79, 7883–7888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bérubé, J., Bouchard, A., and Berthoux, L. (2007). Both TRIM5a and TRIMCyp have only weak antiviral activity in canine D17 cells. Retrovirology 4, 68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brennan, G., Kozyrev, Y., and Hu, S.L. (2008). TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. Proc Natl Acad Sci USA 105, 3569–3574.

    Article  PubMed  Google Scholar 

  • Cao, G., Nie, W.H., Liu, F.L., Kuang, Y.Q., Wang, J.H., Su, W.T., and Zheng, Y.T. (2011). Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis. Zool Res 32, 40–49.

    PubMed  CAS  Google Scholar 

  • Diaz-Griffero, F., Kar, A., Lee, M., Stremlau, M., Poeschla, E., and Sodroski, J. (2007). Comparative requirements for the restriction of retrovirus infection by TRIM5a and TRIMCyp. Virology 369, 400–410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz-Griffero, F., Vandegraaff, N., Li, Y., McGee-Estrada, K., Stremlau, M., Welikala, S., Si, Z., Engelman, A., and Sodroski, J. (2006). Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1. Virology 351, 404–419.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, E.A., Brennan, G., Ferguson, B., Wiseman, R.W., O’Connor, D., and Hu, S.L. (2011). Variable prevalence and functional diversity of the antiretroviral restriction factor TRIMCyp in Macaca fascicularis. J Virol 85, 9956–9963.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fletcher, A.J., Christensen, D.E., Nelson, C., Tan, C.P., Schaller, T., Lehner, P.J., Sundquist, W.I., and Towers, G.J. (2015). TRIM5a requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription. EMBO J 34, 2078–2095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gamble, T.R., Vajdos, F.F., Yoo, S., Worthylake, D.K., Houseweart, M., Sundquist, W.I., and Hill, C.P. (1996). Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285–1294.

    Article  PubMed  CAS  Google Scholar 

  • Ganser-Pornillos, B.K., Chandrasekaran, V., Pornillos, O., Sodroski, J.G., Sundquist, W.I., and Yeager, M. (2011). Hexagonal assembly of a restricting TRIM5a protein. Proc Natl Acad Sci USA 108, 534–539.

    Article  PubMed  Google Scholar 

  • Goldstone, D.C., Walker, P.A., Calder, L.J., Coombs, P.J., Kirkpatrick, J., Ball, N.J., Hilditch, L., Yap, M.W., Rosenthal, P.B., Stoye, J.P., et al. (2014). Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice. Proc Natl Acad Sci USA 111, 9609–9614.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., Tipper, C., and Sodroski, J. (2011). Role of TRIM5a RING domain E3 ubiquitin ligase activity in capsid disassembly, reverse transcription blockade, and restriction of simian immunodeficiency virus. J Virol 85, 8116–8132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuang, Y.Q., Tang, X., Liu, F.L., Jiang, X.L., Zhang, Y.P., Gao, G., and Zheng, Y.T. (2009). Genotyping of TRIM5 locus in northern pig-tailed macaques (Macaca leonina), a primate species susceptible to Human Immunodeficiency Virus type 1 infection. Retrovirology 6, 58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, X., Kim, J., Song, B., Finzi, A., Pacheco, B., and Sodroski, J. (2013). Virus-specific effects of TRIM5arh RING domain functions on restriction of retroviruses. J Virol 87, 7234–7245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, X., and Sodroski, J. (2008). The TRIM5a B-Box 2 domain promotes cooperative binding to the retroviral capsid by mediating higher-order self-association. J Virol 82, 11495–11502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao, C.H., Kuang, Y.Q., Liu, H.L., Zheng, Y.T., and Su, B. (2007). A novel fusion gene, TRIM5-Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection. AIDS 21, S19–S26.

    Article  PubMed  CAS  Google Scholar 

  • Lienlaf, M., Hayashi, F., Di Nunzio, F., Tochio, N., Kigawa, T., Yokoyama, S., and Diaz-Griffero, F. (2011). Contribution of E3-ubiquitin ligase activity to HIV-1 restriction by TRIM5arh: Structure of the RING domain of TRIM5a. J Virol 85, 8725–8737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin, T.Y., and Emerman, M. (2008). Determinants of cyclophilin A-dependent TRIM5a restriction against HIV-1. Virology 379, 335–341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, F.L., Kuang, Y.Q., Mu, D., Zheng, H.Y., Zhu, J.W., and Zheng, Y.T. (2015). The effect of exon 7 deletion during the evolution of TRIMCyp fusion proteins on viral restriction, cytoplasmic body formation and multimerization. PLoS ONE 10, e0121666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luban, J., Bossolt, K.L., Franke, E.K., Kalpana, G.V., and Goff, S.P. (1993). Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73, 1067–1078.

    Article  PubMed  CAS  Google Scholar 

  • Malfavon-Borja, R., Wu, L.I., Emerman, M., and Singh Malik, H. (2013). Birth, decay, and reconstruction of an ancient TRIMCyp gene fusion in primate genomes. Proc Natl Acad Sci USA 110, E583–E592.

    Article  PubMed  Google Scholar 

  • Mbisa, J.L., Delviks-Frankenberry, K.A., Thomas, J.A., Gorelick, R.J., and Pathak, V.K. (2009). Real-time PCR analysis of HIV-1 replication postentry events. Methods Mol Biol 485, 55–72.

    Article  PubMed  CAS  Google Scholar 

  • McEwan, W.A., Schaller, T., Ylinen, L.M., Hosie, M.J., Towers, G.J., and Willett, B.J. (2009). Truncation of TRIM5 in the Feliformia explains the absence of retroviral restriction in cells of the domestic cat. J Virol 83, 8270–8275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mu, D., Yang, H., Zhu, J.W., Liu, F.L., Tian, R.R., Zheng, H.Y., Han, J.B., Shi, P., and Zheng, Y.T. (2014). Independent birth of a novel TRIMCyp in Tupaia belangeri with a divergent function from its paralog TRIM5. Mol Biol Evol 31, 2985–2997.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, E.E., Maegawa, H., and Shioda, T. (2006). A dominant-negative effect of cynomolgus monkey tripartite motif protein TRIM5a on anti-simian immunodeficiency virus SIVmac activity of an African green monkey orthologue. Virology 350, 158–163.

    Article  PubMed  CAS  Google Scholar 

  • Newman, R.M., Hall, L., Kirmaier, A., Pozzi, L.A., Pery, E., Farzan, M., O’Neil, S.P., and Johnson, W. (2008). Evolution of a TRIM5-CypA splice isoform in Old World monkeys. PLoS Pathog 4, e1000003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nisole, S., Lynch, C., Stoye, J.P., and Yap, M.W. (2004). A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc Natl Acad Sci USA 101, 13324–13328.

    Article  PubMed  CAS  Google Scholar 

  • Ohkura, S., Yap, M.W., Sheldon, T., and Stoye, J.P. (2006). All three variable regions of the TRIM5a B30.2 domain can contribute to the specificity of retrovirus restriction. J Virol 80, 8554–8565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez-Caballero, D., Hatziioannou, T., Yang, A., Cowan, S., and Bieniasz, P.D. (2005). Human tripartite motif 5a domains responsible for retrovirus restriction activity and specificity. J Virology 79, 8969–8978.

    Article  PubMed  CAS  Google Scholar 

  • Perron, M.J., Stremlau, M., Song, B., Ulm, W., Mulligan, R.C., and Sodroski, J. (2004). TRIM5a mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci USA 101, 11827–11832.

    Article  PubMed  CAS  Google Scholar 

  • Price, A.J., Marzetta, F., Lammers, M., Ylinen, L.M.J., Schaller, T., Wilson, S.J., Towers, G.J., and James, L.C. (2009). Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nat Struct Mol Biol 16, 1036–1042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reynolds, M.R., Sacha, J.B., Weiler, A.M., Borchardt, G.J., Glidden, C.E., Sheppard, N.C., Norante, F.A., Castrovinci, P.A., Harris, J.J., Robertson, H.T., et al. (2011). The TRIM5a genotype of rhesus macaques affects acquisition of simian immunodeficiency virus SIVsmE660 infection after repeated limiting-dose intrarectal challenge. J Virol 85, 9- 637–9640.

    Article  CAS  Google Scholar 

  • Roa, A., Hayashi, F., Yang, Y., Lienlaf, M., Zhou, J., Shi, J., Watanabe, S., Kigawa, T., Yokoyama, S., Aiken, C., et al. (2012). RING domain mutations uncouple TRIM5a restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating. J Virol 86, 1717–1727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez, J.G., Okreglicka, K., Chandrasekaran, V., Welker, J.M., Sundquist, W.I., and Pornillos, O. (2014). The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer. Proc Natl Acad Sci USA 111, 2494–2499.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, S.L., Wu, L.I., Emerman, M., and Malik, H.S. (2005). Positive selection of primate TRIM5a identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 102, 2832–2837.

    Article  PubMed  CAS  Google Scholar 

  • Sayah, D.M., Sokolskaja, E., Berthoux, L., and Luban, J. (2004). Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430, 569–573.

    Article  PubMed  CAS  Google Scholar 

  • Stremlau, M., Owens, C.M., Perron, M.J., Kiessling, M., Autissier, P., and Sodroski, J. (2004). The cytoplasmic body component TRIM5a restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853.

    Article  PubMed  CAS  Google Scholar 

  • Virgen, C.A., Kratovac, Z., Bieniasz, P.D., and Hatziioannou, T. (2008). Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species. Proc Natl Acad Sci USA 105, 3563–3568.

    Article  PubMed  Google Scholar 

  • Wilson, S.J., Webb, B.L.J., Maplanka, C., Newman, R.M., Verschoor, E.J., Heeney, J.L., and Towers, G.J. (2008a). Rhesus macaque TRIM5 alleles have divergent antiretroviral specificities. J Virol 82, 7243–7247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson, S.J., Webb, B.L.J., Ylinen, L.M.J., Verschoor, E., Heeney, J.L., and Towers, G.J. (2008b). Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc Natl Acad Sci USA 105, 3557–3562.

    Article  PubMed  Google Scholar 

  • Yap, M.W., Dodding, M.P., and Stoye, J.P. (2006). Trim-cyclophilin A fusion proteins can restrict human immunodeficiency virus type 1 infection at two distinct phases in the viral life cycle. J Virol 80, 4061–4067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yap, M.W., Nisole, S., Lynch, C., and Stoye, J.P. (2004). Trim5a protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci USA 101, 10786–10791.

    Article  PubMed  CAS  Google Scholar 

  • Ylinen, L.M.J., Keckesova, Z., Wilson, S.J., Ranasinghe, S., and Towers, G.J. (2005). Differential restriction of human immunodeficiency virus type 2 and simian immunodeficiency virus SIVmac by TRIM5a alleles. J Virol 79, 11580–11587.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ylinen, L.M.J., Price, A.J., Rasaiyaah, J., Hué, S., Rose, N.J., Marzetta, F., James, L.C., and Towers, G.J. (2010). Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity. PLoS Pathog 6, e1001062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Guang-Xia Gao (Institute of Biophysics, Chinese Academy of Sciences) for providing the HIV-1-GFP and NMLV- GFP packaging plasmids, Prof. Ce-Shi Chen (Kunming Institute of Zoology, Chinese Academy of Sciences) for providing the Myc-ub plasmid, Prof. Greg J. Towers (University College London) for the p8.91 G89V plasmid, and Ms. Huan Chen (Kunming Institute of Zoology) for the primers and probes used in qPCR. We thank the Kunming Primate Research Center, Chinese Academy of Sciences, for providing macaque samples. This work was supported by grants from the National Natural Science Foundation of China (81471620, 81671627, 81571606, 81172876, U0832601), the 13th Five-Year Key Scientific and Technological Program of China (2017ZX10304402-002-004, 2017ZX10202102-001-005), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJZD-EW-L10-02, KSCX2-EW-R-13), the National Key Research & Development Plan (2016YFC1201000), and the National Basic Research Program of China (2012CBA01305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Tang Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, D., Zhu, JW., Liu, FL. et al. Association of TRIMCyp and TRIM5α from assam macaques leads to a functional trade-off between HIV-1 and N-MLV inhibition. Sci. China Life Sci. 61, 954–965 (2018). https://doi.org/10.1007/s11427-018-9295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9295-y

Keywords

Navigation