Skip to main content
Log in

Identification of microRNA-like RNAs in Ophiocordyceps sinensis

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Ophiocordyceps sinensis is well known as a traditional Chinese medicine and has widely been used for over 2,000 years to stimulate immune system, decrease blood pressure and to inhibit tumor growth. While miRNAs are increasingly recognized for their roles in post-transcriptional regulation of gene expression in animals and plants, miRNAs in fungi were less studied until the discovery of microRNA-like RNA (milRNA). High-throughput sequencing and bioinformatics approaches were used to identify conserved and novel milRNAs in O. sinensis. 40 conserved milRNAs were identified, while 23 pre-miRNA candidates encoding 31 novel milRNAs were predicted. Furthermore, the potential target genes of milRNAs in human were predicted and gene ontology analysis was applied to these genes. Enrichment analysis of GO-represented biological process showed that target genes of both conserved and novel milRNAs are involved in development, metabolic and immune processes, indicating the potential roles of milRNAs of O. sinensis in pharmacological effects as health food and traditional Chinese medicine. This study is the first report on genome-wide analysis of milRNAs in O. sinensis and it provides a useful resource to further study the potential roles of milRNAs as active components of O. sinensis in health food or traditional Chinese medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J. M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene Ontology: tool for the unification of biology. Nat Genet 25, 25–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel, D.P. (2004). microRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Beatty, M., Guduric-Fuchs, J., Brown, E., Bridgett, S., Chakravarthy, U., Hogg, R.E., and Simpson, D.A. (2014). Small RNAs from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma. BMC Genomics 15, 933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bok, J.W., Lermer, L., Chilton, J., Klingeman, H.G., and Towers, G.H.N. (1999). Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51, 891–898.

    Article  CAS  PubMed  Google Scholar 

  • Bonnet, E., Wuyts, J., Rouzé, P., and Van de Peer, Y. (2004). Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20, 2911–2917.

    Article  CAS  PubMed  Google Scholar 

  • Borges, F., and Martienssen, R.A. (2015). The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16, 727–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, R., Jiang, N., Jiang, Q., Sun, X., Wang, Y., Zhang, H., and Hu, Z. (2014). Exploring microRNA-like small RNAs in the filamentous fungus Fusarium oxysporum. PLoS ONE 9, e104956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Gao, C., Li, H., Huang, L., Sun, Q., Dong, Y., Tian, C., Gao, S., Dong, H., Guan, D., et al. (2010). Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid and powdered milk products. Cell Res 20, 1128–1137.

    Article  CAS  PubMed  Google Scholar 

  • Chin, A.R., Fong, M.Y., Somlo, G., Wu, J., Swiderski, P., Wu, X., and Wang, S.E. (2016). Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 26, 217–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlmann, T.A., and Kück, U. (2015). Dicer-dependent biogenesis of small RNAs and evidence for microRNA-like RNAs in the penicillin producing fungus Penicillium chrysogenum. PLoS ONE 10, e0125989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumesic, P.A., Natarajan, P., Chen, C., Drinnenberg, I.A., Schiller, B.J., Thompson, J., Moresco, J.J., Yates Iii, J.R., Bartel, D.P., and Madhani, H.D. (2013). Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell 152, 957–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D.S. (2003). microRNA targets in Drosophila. Genome Biol 5, R1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedländer, M.R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and Rajewsky, N. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26, 407–415.

    Article  CAS  PubMed  Google Scholar 

  • Friedländer, M.R., Mackowiak, S.D., Li, N., Chen, W., and Rajewsky, N. (2012). miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40, 37–52.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones, S. (2010). miRBase: microRNA sequences and annotation. Curr Protocols Bioinform 12, 1–10.

    Google Scholar 

  • Huang, B.M., Ju, S.Y., Wu, C.S., Chuang, W.J., Sheu, C.C., and Leu, S.F. (2001). Cordyceps sinensis and its fractions stimulate MA-10 mouse Leydig tumor cell steroidogenesis. J Androl 22, 831–837.

    CAS  PubMed  Google Scholar 

  • Huang, B.M., Hsiao, K.Y., Chuang, P.C., Wu, M.H., Pan, H.A., and Tsai, S. J. (2004). Upregulation of steroidogenic enzymes and ovarian 17ß-estradiol in human granulosa-lutein cells by Cordyceps sinensis mycelium. Biol Reprod 70, 1358–1364.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, N., Yang, Y., Janbon, G., Pan, J., and Zhu, X. (2012). Identification and functional demonstration of miRNAs in the fungus Cryptococcus neoformans. PLoS ONE 7, e52734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., and Marks, D.S. (2005). Correction: human microRNA targets. PLoS Biol 3, e264–1328.

    Article  CAS  PubMed Central  Google Scholar 

  • Kang, K., Zhong, J., Jiang, L., Liu, G., Gou, C.Y., Wu, Q., Wang, Y., Luo, J., and Gou, D. (2013). Identification of microRNA-like RNAs in the filamentous fungus Trichoderma reesei by solexa sequencing. PLoS ONE 8, e76288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo, C.F., Chen, C.C., Luo, Y.H., Huang, R.Y., Chuang, W.J., Sheu, C.C., and Lin, Y.S. (2005). Cordyceps sinensis mycelium protects mice from group A streptococcal infection. J Med Microbiol 54, 795–802.

    Article  PubMed  Google Scholar 

  • Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau, S.K.P., Chow, W.N., Wong, A.Y.P., Yeung, J.M.Y., Bao, J., Zhang, N., Lok, S., Woo, P.C.Y., and Yuen, K.Y. (2013). Identification of micro-RNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. PLoS Negl Trop Dis 7, e2398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Hsiang, T., Yang, R.H., Hu, X.D., Wang, K., Wang, W.J., Wang, X. L., Jiao, L., and Yao, Y.J. (2016). Comparison of different sequencing and assembly strategies for a repeat-rich fungal genome, Ophiocordyceps sinensis. J Microbiol Methods 128, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Liang, G.F., Zhu, Y.L., Sun, B., Shao, Y.H., Jing, A.H., Wang, J.H., and Xiao, Z.D. (2014). Assessing the survival of exogenous plant micro-RNA in mice. Food Sci Nutr 2, 380–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Lu, S., and Ji, M.R. (1992). Effects of Cordyceps sinensis (CS) on in vitro natural killer cells (in Chinese). Zhongguo Zhong Xi Yi Jie He Za Zhi 12, 267–269, 259.

    CAS  PubMed  Google Scholar 

  • Lorenz, R., Bernhart, S.H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., and Hofacker, I.L. (2011). ViennaRNA package 2.0. Algorithms Mol Biol 6, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manabe, N., Sugimoto, M., Azuma, Y., Taketomo, N., Yamashita, A., Tsuboi, H., Tsunoo, A., Kinjo, N., Nian-Lai, H., and Miyamoto, H. (1996). Effects of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism in the mouse. Jpn J Pharmacol 70, 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Manabe, N., Azuma, Y., Sugimoto, M., Uchio, K., Miyamoto, M., Taketomo, N., Tsuchita, H., and Miyamoto, H. (2000). Effects of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism and blood flow in dietary hypoferric anaemic mice. Br J Nutr 83, 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., and Thomas, P.D. (2017). PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45, D183–D189.

    Article  CAS  PubMed  Google Scholar 

  • Mlotshwa, S., Pruss, G.J., MacArthur, J.L., Endres, M.W., Davis, C., Hofseth, L.J., Peña, M.M., and Vance, V. (2015). A novel chemopreventive strategy based on therapeutic microRNAs produced in plants. Cell Res 25, 521–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayashiki, H., and Nguyen, Q.B. (2008). RNA interference: roles in fungal biology. Curr Opin Microbiol 11, 494–502.

    Article  CAS  PubMed  Google Scholar 

  • Nawrocki, E.P., Burge, S.W., Bateman, A., Daub, J., Eberhardt, R.Y., Eddy, S.R., Floden, E.W., Gardner, P.P., Jones, T.A., Tate, J., et al. (2015). Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43, D130–D137.

    Article  CAS  PubMed  Google Scholar 

  • White, J.L., and Dawson, W.O. (1979). Effect of cordycepin triphosphate on in vitro RNA synthesis by plant viral replicases. J Virol 29, 811–814.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler, D. (2008). Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of Tibet’s rural economy. Econ Bot 62, 291–305.

    Article  Google Scholar 

  • Wu, J., Wang, D., Liu, Y., Wang, L., Qiao, X., and Zhang, S. (2014). Identification of miRNAs involved in pear fruit development and quality. BMC Genomics 15, 953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, R.H., Peng, X.E., Chen, G.Z., and Chen, G.L. (1992). Effects of cordyceps sinensis on natural killer activity and colony formation of B16 melanoma. Chin Med J (Engl) 105, 97–101.

    CAS  Google Scholar 

  • Yang, J., Farmer, L.M., Agyekum, A.A.A., Elbaz-Younes, I., and Hirschi, K.D. (2015a). Detection of an abundant plant-based small RNA in healthy consumers. PLoS ONE 10, e0137516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Farmer, L.M., Agyekum, A.A.A., and Hirschi, K.D. (2015b). Detection of dietary plant-based small RNAs in animals. Cell Res 25, 517–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, J., Takamura, S., Yamaguchi, N., Ren, L.J., Chen, H., Koshimura, S., and Suzuki, S. (1989). Antitumor activity of an extract of Cordyceps sinensis (Berk.) Sacc. against murine tumor cell lines. Jpn J Exp Med 59, 157–161.

    CAS  PubMed  Google Scholar 

  • Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., Li, J., Bian, Z., Liang, X., Cai, X., et al. (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22, 273–274.

    Article  Google Scholar 

  • Zhou, J., Fu, Y., Xie, J., Li, B., Jiang, D., Li, G., and Cheng, J. (2012a). Identification of microRNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Mol Genet Genomics 287, 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Q., Wang, Z., Zhang, J., Meng, H., and Huang, B. (2012b). Genomewide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biol 116, 1156–1162.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X.W., Li, L.J., and Tian, E.W. (2014). Advances in research of the artificial cultivation of Ophiocordyceps sinensis in China. Crit Rev Biotech 34, 233–243.

    Article  Google Scholar 

  • Zhou, Z., Li, X., Liu, J., Dong, L., Chen, Q., Liu, J., Kong, H., Zhang, Q., Qi, X., Hou, D., et al. (2015). Honeysuckle-encoded atypical micro-RNA2911 directly targets influenza A viruses. Cell Res 25, 39–49.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J.S., Halpern, G.M., and Jones, K. (1998). The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis part II. J Altern Complement Med 4, 429–457.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2014CB542300), the National Natural Science Foundation of China (81602697), the Natural Science Foundation of Jiangsu Province (BE2016737) and the Fundamental Research Funds for the Central Universities (020814380070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen-Yu Zhang, Dongxia Hou or Zhen Zhou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, X., Ma, L. et al. Identification of microRNA-like RNAs in Ophiocordyceps sinensis. Sci. China Life Sci. 62, 349–356 (2019). https://doi.org/10.1007/s11427-017-9277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9277-9

Keywords

Navigation