Identification of microRNA-like RNAs in Ophiocordyceps sinensis

  • Wen Zhang
  • Xiaona Li
  • Lina Ma
  • Uzair Urrehman
  • Xilinqiqige Bao
  • Yujing Zhang
  • Chen-Yu Zhang
  • Dongxia Hou
  • Zhen Zhou
Research Paper


Ophiocordyceps sinensis is well known as a traditional Chinese medicine and has widely been used for over 2,000 years to stimulate immune system, decrease blood pressure and to inhibit tumor growth. While miRNAs are increasingly recognized for their roles in post-transcriptional regulation of gene expression in animals and plants, miRNAs in fungi were less studied until the discovery of microRNA-like RNA (milRNA). High-throughput sequencing and bioinformatics approaches were used to identify conserved and novel milRNAs in O. sinensis. 40 conserved milRNAs were identified, while 23 pre-miRNA candidates encoding 31 novel milRNAs were predicted. Furthermore, the potential target genes of milRNAs in human were predicted and gene ontology analysis was applied to these genes. Enrichment analysis of GO-represented biological process showed that target genes of both conserved and novel milRNAs are involved in development, metabolic and immune processes, indicating the potential roles of milRNAs of O. sinensis in pharmacological effects as health food and traditional Chinese medicine. This study is the first report on genome-wide analysis of milRNAs in O. sinensis and it provides a useful resource to further study the potential roles of milRNAs as active components of O. sinensis in health food or traditional Chinese medicine.


Ophiocordyceps sinensis O. sinensis miRNA milRNA high-throughput sequencing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Basic Research Program of China (2014CB542300), the National Natural Science Foundation of China (81602697), the Natural Science Foundation of Jiangsu Province (BE2016737) and the Fundamental Research Funds for the Central Universities (020814380070).

Supplementary material

11427_2017_9277_MOESM1_ESM.docx (951 kb)
Supplementary material, approximately 951 KB.


  1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J. M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene Ontology: tool for the unification of biology. Nat Genet 25, 25–29.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bartel, D.P. (2004). microRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.CrossRefPubMedGoogle Scholar
  3. Beatty, M., Guduric-Fuchs, J., Brown, E., Bridgett, S., Chakravarthy, U., Hogg, R.E., and Simpson, D.A. (2014). Small RNAs from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma. BMC Genomics 15, 933.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bok, J.W., Lermer, L., Chilton, J., Klingeman, H.G., and Towers, G.H.N. (1999). Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51, 891–898.CrossRefPubMedGoogle Scholar
  5. Bonnet, E., Wuyts, J., Rouzé, P., and Van de Peer, Y. (2004). Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20, 2911–2917.CrossRefPubMedGoogle Scholar
  6. Borges, F., and Martienssen, R.A. (2015). The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16, 727–741.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen, R., Jiang, N., Jiang, Q., Sun, X., Wang, Y., Zhang, H., and Hu, Z. (2014). Exploring microRNA-like small RNAs in the filamentous fungus Fusarium oxysporum. PLoS ONE 9, e104956.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen, X., Gao, C., Li, H., Huang, L., Sun, Q., Dong, Y., Tian, C., Gao, S., Dong, H., Guan, D., et al. (2010). Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid and powdered milk products. Cell Res 20, 1128–1137.CrossRefPubMedGoogle Scholar
  9. Chin, A.R., Fong, M.Y., Somlo, G., Wu, J., Swiderski, P., Wu, X., and Wang, S.E. (2016). Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 26, 217–228.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dahlmann, T.A., and Kück, U. (2015). Dicer-dependent biogenesis of small RNAs and evidence for microRNA-like RNAs in the penicillin producing fungus Penicillium chrysogenum. PLoS ONE 10, e0125989.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dumesic, P.A., Natarajan, P., Chen, C., Drinnenberg, I.A., Schiller, B.J., Thompson, J., Moresco, J.J., Yates Iii, J.R., Bartel, D.P., and Madhani, H.D. (2013). Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell 152, 957–968.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D.S. (2003). microRNA targets in Drosophila. Genome Biol 5, R1.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Friedländer, M.R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and Rajewsky, N. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26, 407–415.CrossRefPubMedGoogle Scholar
  14. Friedländer, M.R., Mackowiak, S.D., Li, N., Chen, W., and Rajewsky, N. (2012). miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40, 37–52.CrossRefPubMedGoogle Scholar
  15. Griffiths-Jones, S. (2010). miRBase: microRNA sequences and annotation. Curr Protocols Bioinform 12, 1–10.Google Scholar
  16. Huang, B.M., Ju, S.Y., Wu, C.S., Chuang, W.J., Sheu, C.C., and Leu, S.F. (2001). Cordyceps sinensis and its fractions stimulate MA-10 mouse Leydig tumor cell steroidogenesis. J Androl 22, 831–837.PubMedGoogle Scholar
  17. Huang, B.M., Hsiao, K.Y., Chuang, P.C., Wu, M.H., Pan, H.A., and Tsai, S. J. (2004). Upregulation of steroidogenic enzymes and ovarian 17ß-estradiol in human granulosa-lutein cells by Cordyceps sinensis mycelium. Biol Reprod 70, 1358–1364.CrossRefPubMedGoogle Scholar
  18. Jiang, N., Yang, Y., Janbon, G., Pan, J., and Zhu, X. (2012). Identification and functional demonstration of miRNAs in the fungus Cryptococcus neoformans. PLoS ONE 7, e52734.CrossRefPubMedPubMedCentralGoogle Scholar
  19. John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., and Marks, D.S. (2005). Correction: human microRNA targets. PLoS Biol 3, e264–1328.CrossRefPubMedCentralGoogle Scholar
  20. Kang, K., Zhong, J., Jiang, L., Liu, G., Gou, C.Y., Wu, Q., Wang, Y., Luo, J., and Gou, D. (2013). Identification of microRNA-like RNAs in the filamentous fungus Trichoderma reesei by solexa sequencing. PLoS ONE 8, e76288.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kuo, C.F., Chen, C.C., Luo, Y.H., Huang, R.Y., Chuang, W.J., Sheu, C.C., and Lin, Y.S. (2005). Cordyceps sinensis mycelium protects mice from group A streptococcal infection. J Med Microbiol 54, 795–802.CrossRefPubMedGoogle Scholar
  22. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lau, S.K.P., Chow, W.N., Wong, A.Y.P., Yeung, J.M.Y., Bao, J., Zhang, N., Lok, S., Woo, P.C.Y., and Yuen, K.Y. (2013). Identification of micro-RNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. PLoS Negl Trop Dis 7, e2398.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li, Y., Hsiang, T., Yang, R.H., Hu, X.D., Wang, K., Wang, W.J., Wang, X. L., Jiao, L., and Yao, Y.J. (2016). Comparison of different sequencing and assembly strategies for a repeat-rich fungal genome, Ophiocordyceps sinensis. J Microbiol Methods 128, 1–6.CrossRefPubMedGoogle Scholar
  25. Liang, G.F., Zhu, Y.L., Sun, B., Shao, Y.H., Jing, A.H., Wang, J.H., and Xiao, Z.D. (2014). Assessing the survival of exogenous plant micro-RNA in mice. Food Sci Nutr 2, 380–388.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liu, C., Lu, S., and Ji, M.R. (1992). Effects of Cordyceps sinensis (CS) on in vitro natural killer cells (in Chinese). Zhongguo Zhong Xi Yi Jie He Za Zhi 12, 267–269, 259.PubMedGoogle Scholar
  27. Lorenz, R., Bernhart, S.H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., and Hofacker, I.L. (2011). ViennaRNA package 2.0. Algorithms Mol Biol 6, 26.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Manabe, N., Sugimoto, M., Azuma, Y., Taketomo, N., Yamashita, A., Tsuboi, H., Tsunoo, A., Kinjo, N., Nian-Lai, H., and Miyamoto, H. (1996). Effects of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism in the mouse. Jpn J Pharmacol 70, 85–88.CrossRefPubMedGoogle Scholar
  29. Manabe, N., Azuma, Y., Sugimoto, M., Uchio, K., Miyamoto, M., Taketomo, N., Tsuchita, H., and Miyamoto, H. (2000). Effects of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism and blood flow in dietary hypoferric anaemic mice. Br J Nutr 83, 197–204.CrossRefPubMedGoogle Scholar
  30. Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., and Thomas, P.D. (2017). PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45, D183–D189.CrossRefPubMedGoogle Scholar
  31. Mlotshwa, S., Pruss, G.J., MacArthur, J.L., Endres, M.W., Davis, C., Hofseth, L.J., Peña, M.M., and Vance, V. (2015). A novel chemopreventive strategy based on therapeutic microRNAs produced in plants. Cell Res 25, 521–524.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nakayashiki, H., and Nguyen, Q.B. (2008). RNA interference: roles in fungal biology. Curr Opin Microbiol 11, 494–502.CrossRefPubMedGoogle Scholar
  33. Nawrocki, E.P., Burge, S.W., Bateman, A., Daub, J., Eberhardt, R.Y., Eddy, S.R., Floden, E.W., Gardner, P.P., Jones, T.A., Tate, J., et al. (2015). Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43, D130–D137.CrossRefPubMedGoogle Scholar
  34. White, J.L., and Dawson, W.O. (1979). Effect of cordycepin triphosphate on in vitro RNA synthesis by plant viral replicases. J Virol 29, 811–814.PubMedPubMedCentralGoogle Scholar
  35. Winkler, D. (2008). Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of Tibet’s rural economy. Econ Bot 62, 291–305.CrossRefGoogle Scholar
  36. Wu, J., Wang, D., Liu, Y., Wang, L., Qiao, X., and Zhang, S. (2014). Identification of miRNAs involved in pear fruit development and quality. BMC Genomics 15, 953.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Xu, R.H., Peng, X.E., Chen, G.Z., and Chen, G.L. (1992). Effects of cordyceps sinensis on natural killer activity and colony formation of B16 melanoma. Chin Med J (Engl) 105, 97–101.Google Scholar
  38. Yang, J., Farmer, L.M., Agyekum, A.A.A., Elbaz-Younes, I., and Hirschi, K.D. (2015a). Detection of an abundant plant-based small RNA in healthy consumers. PLoS ONE 10, e0137516.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yang, J., Farmer, L.M., Agyekum, A.A.A., and Hirschi, K.D. (2015b). Detection of dietary plant-based small RNAs in animals. Cell Res 25, 517–520.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Yoshida, J., Takamura, S., Yamaguchi, N., Ren, L.J., Chen, H., Koshimura, S., and Suzuki, S. (1989). Antitumor activity of an extract of Cordyceps sinensis (Berk.) Sacc. against murine tumor cell lines. Jpn J Exp Med 59, 157–161.PubMedGoogle Scholar
  41. Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., Li, J., Bian, Z., Liang, X., Cai, X., et al. (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22, 273–274.CrossRefGoogle Scholar
  42. Zhou, J., Fu, Y., Xie, J., Li, B., Jiang, D., Li, G., and Cheng, J. (2012a). Identification of microRNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Mol Genet Genomics 287, 275–282.CrossRefPubMedGoogle Scholar
  43. Zhou, Q., Wang, Z., Zhang, J., Meng, H., and Huang, B. (2012b). Genomewide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biol 116, 1156–1162.CrossRefPubMedGoogle Scholar
  44. Zhou, X.W., Li, L.J., and Tian, E.W. (2014). Advances in research of the artificial cultivation of Ophiocordyceps sinensis in China. Crit Rev Biotech 34, 233–243.CrossRefGoogle Scholar
  45. Zhou, Z., Li, X., Liu, J., Dong, L., Chen, Q., Liu, J., Kong, H., Zhang, Q., Qi, X., Hou, D., et al. (2015). Honeysuckle-encoded atypical micro-RNA2911 directly targets influenza A viruses. Cell Res 25, 39–49.CrossRefPubMedGoogle Scholar
  46. Zhu, J.S., Halpern, G.M., and Jones, K. (1998). The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis part II. J Altern Complement Med 4, 429–457.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life SciencesNanjing UniversityNanjingChina
  2. 2.The Drug Laboratory of Mongolian Medicine, and Pharmacy InstituteInner Mongolia International Mongolian HospitalHohhotChina

Personalised recommendations