Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy
- 21 Downloads
Abstract
Paclitaxel (PTX) is one of the most effective anticancer drugs for the treatment of various solid tumors, but its clinical use is limited by its poor solubility, low bioavailability, and severe systemic toxicity. Encapsulation of PTX in polymeric nanoparticles is used to overcome these problems but these micelles still need improvements in stability, pharmacokinetics, therapeutic efficacy, and safety profiles. In this study, we demonstrate a facile fabrication of a stable PTX-binding micelle made from poly (ethylene glycol)-block-dendritic polylysine, whose primary amines were reacted with phenethyl isothiocyanate (PEITC), a hydrophobic anticancer agent under clinical study. The amphiphilic conjugate (PEG-Gx-PEITC; Gx, the generation of the polylysine dendron) formed well-defined micelles whose core was composed of phenyl groups and thiourea groups binding PTX via π-π stacking and hydrogen bonding. Compared with the PTX-loaded poly(ethylene glycol)-block-poly(D,L-lactide) (PEGPDLLA/ PTX) micelles in clinical use, PTX-loaded PEG-Gx-PEITC third-generation (PEG-G3-PEITC/PTX) micelles showed slowed blood clearance, enhanced tumor accumulation, and thus much improved in vivo therapeutic efficacy in both subcutaneous and orthotopic human breast cancer xenografts. Therefore, PEG-G3-PEITC is a promising drug delivery system for PTX in the treatment of breast cancer.
Keywords
paclitaxel delivery paclitaxel-binding phenethyl isothiocyanate dendritic polylysine polymeric micelles cancer drug delivery enhanced stability prolonged blood circulationPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
This work was supported by the National Natural Science Foundation of China (U1501243, 51603181), the National Basic Research Program (2014CB931900), the National Natural Science Foundation of China (51603181) and the Fundamental Research Funds for the Central Universities (2016QNA4024) for financial support.
Supplementary material
References
- Berglund, M., Dalence-Guzman, M.F., Skogvall, S., and Sterner, O. (2008). SAR studies of capsazepinoid bronchodilators. Part 2: chlorination and catechol replacement in the A-ring. Bioorgan Med Chem 16, 2513–2528.CrossRefGoogle Scholar
- Burt, H.M., Zhang, X., Toleikis, P., Embree, L., and Hunter, W.L. (1999). Development of copolymers of poly(D,L-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel. Colloids Surface B 16, 161–171.CrossRefGoogle Scholar
- Carstens, M.G., de Jong, P.H.J.L.F., van Nostrum, C.F., Kemmink, J., Verrijk, R., de Leede, L.G.J., Crommelin, D.J.A., and Hennink, W.E. (2008). The effect of core composition in biodegradable oligomeric micelles as taxane formulations. Eur J Pharm Biopharm 68, 596–606.CrossRefPubMedGoogle Scholar
- Chen, H., Kim, S., He, W., Wang, H., Low, P.S., Park, K., and Cheng, J.X. (2008). Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. Langmuir 24, 5213–5217.CrossRefPubMedGoogle Scholar
- Fang, R.H., Aryal, S., Hu, C.M.J., and Zhang, L. (2010). Quick synthesis of lipid-polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir 26, 16958–16962.CrossRefPubMedGoogle Scholar
- Guo, Z., Zou, Y., He, H., Rao, J., Ji, S., Cui, X., Ke, H., Deng, Y., Yang, H., Chen, C., et al. (2016). Bifunctional platinated nanoparticles for photoinduced tumor ablation. Adv Mater 28, 10155–10164.CrossRefPubMedGoogle Scholar
- Gupta, P., Wright, S.E., Kim, S.H., and Srivastava, S.K. (2014). Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. Biochim Biophys Acta 1846, 405–424.PubMedPubMedCentralGoogle Scholar
- Kim, S.C., Kim, D.W., Shim, Y.H., Bang, J.S., Oh, H.S., Kim, S.W., and Seo, M.H. (2001). In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 72, 191–202.CrossRefPubMedGoogle Scholar
- Liu, K., Cang, S., Ma, Y., and Chiao, J.W. (2013). Synergistic effect of paclitaxel and epigenetic agent phenethyl isothiocyanate on growth inhibition, cell cycle arrest and apoptosis in breast cancer cells. Cancer Cell Int 13, 10.CrossRefPubMedPubMedCentralGoogle Scholar
- Mishra, A., Dwivedi, J., Shukla, K., and Malviya, P. (2014). X-Ray diffr-action and Fourier transformation infrared spectroscopy studies of copper (II) thiourea chloro and sulphate complexes. Journal of Physics Conference Series.Google Scholar
- Muthoosamy, K., Abubakar, I.B., Bai, R.G., Loh, H.S., and Manickam, S. (2016). Exceedingly higher co-loading of curcumin and paclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment. Sci Rep 6, 32808.CrossRefPubMedPubMedCentralGoogle Scholar
- Saeed, A., Bolte, M., Erben, M.F., and Pérez, H. (2015). Intermolecular interactions in crystalline 1-(adamantane-1-carbonyl)-3-substituted thioureas with Hirshfeld surface analysis. Crystengcomm 17, 7551–7563.CrossRefGoogle Scholar
- Shao, S., Zhou, Q., Si, J., Tang, J., Liu, X., Wang, M., Gao, J., Wang, K., Xu, R., and Shen, Y. (2017). A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nat Biomed Eng 1, 7-45–757.CrossRefGoogle Scholar
- Singla, A.K., Garg, A., and Aggarwal, D. (2002). Paclitaxel and its formulations. Int J Pharm 235, 179–192.CrossRefPubMedGoogle Scholar
- Skog, S., He, Q., Khoshnoud, R., Fornander, T., and Rutqvist, L.E. (2004). Genes related to growth regulation, DNA repair and apoptosis in an oestrogen receptor-negative (MDA-231) versus an oestrogen receptorpositive (MCF-7) breast tumour cell line. Hum Hered 25, 41–47.Google Scholar
- Stirland, D.L., Nichols, J.W., Miura, S., and Bae, Y.H. (2013). Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice. J Control Release 172, 1045–1064.CrossRefPubMedPubMedCentralGoogle Scholar
- Sun, Q., Radosz, M., and Shen, Y. (2012). Challenges in design of translational nanocarriers. J Control Release 164, 156–169.CrossRefPubMedGoogle Scholar
- Tang, B., Fang, G., Gao, Y., Liu, Y., Liu, J., Zou, M., and Cheng, G. (2014). Liprosomes loading paclitaxel for brain-targeting delivery by intravenous administration: in vitro characterization and in vivo evaluation. Int J Pharm 475, 416–427.CrossRefPubMedGoogle Scholar
- Tang, Z., He, C., Tian, H., Ding, J., Hsiao, B.S., Chu, B., and Chen, X. (2016). Polymeric nanostructured materials for biomedical applications. Prog Polymer Sci 60, 86–128.CrossRefGoogle Scholar
- Tyrrell, Z.L., Shen, Y., and Radosz, M. (2010). Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog Polymer Sci 35, 1128–1143.CrossRefGoogle Scholar
- Wang, J., Sun, X., Mao, W., Sun, W., Tang, J., Sui, M., Shen, Y., and Gu, Z. (2013). Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy. Adv Mater 25, 3670–3676.CrossRefPubMedGoogle Scholar
- Wang, Y.J., Wang, C., Gong, C.Y., Wang, Y.J., Guo, G., Luo, F., and Qian, Z.Y. (2012). Polysorbate 80 coated poly (-caprolactone)-poly (ethylene glycol)-poly (-caprolactone) micelles for paclitaxel delivery. Int J Pharm 434, 1–8.CrossRefPubMedGoogle Scholar
- Wei, Y., Li, L., Xi, Y., Qian, S., Gao, Y., and Zhang, J. (2014). Sustained release and enhanced bioavailability of injectable scutellarin-loaded bovine serum albumin nanoparticles. Int J Pharm 476, 142–148.CrossRefPubMedGoogle Scholar
- Wu, X., Zhou, Q., and Xu, K. (2009). Are isothiocyanates potential anticancer drugs? Acta Pharmacol Sin 30, 501–512.CrossRefPubMedPubMedCentralGoogle Scholar
- Xi, X., Hu, S., Zhou, Z., Liu, X., Tang, J., and Shen, Y. (2016). Dendrimers with the protocatechuic acid building block for anticancer drug delivery. J Mater Chem B 4, 5236–5245.CrossRefGoogle Scholar
- Xiao, K., Luo, J., Fowler, W.L., Li, Y., Lee, J.S., Xing, L., Cheng, R.H., Wang, L., and Lam, K.S. (2009). A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials 30, 6006–6016.CrossRefPubMedPubMedCentralGoogle Scholar
- Yano, S., Takehara, K., Kishimoto, H., Tazawa, H., Urata, Y., Kagawa, S., Bouvet, M., Fujiwara, T., and Hoffman, R.M. (2016). In vivo selection of intermediately- and highly-malignant variants of triple-negative breast cancer in orthotopic nude mouse models. Anticancer Res 36, 6-273–6278.CrossRefGoogle Scholar
- Zhang, P., Huang, Y., Liu, H., Marquez, R.T., Lu, J., Zhao, W., Zhang, X., Gao, X., Li, J., Venkataramanan, R., et al. (2014). A PEG-Fmoc conjugate as a nanocarrier for paclitaxel. Biomaterials 35, 7146–7156.CrossRefPubMedPubMedCentralGoogle Scholar
- Zhang, P., Huang, Y., Kwon, Y.T., and Li, S. (2015). PEGylated fmocamino acid conjugates as effective nanocarriers for improved drug delivery. Mol Pharm 12, 1680–1690.CrossRefPubMedGoogle Scholar
- Zhao, B., Zhou, Z., and Shen, Y. (2016). Effects of chirality on gene delivery efficiency of polylysine. Chin J Polym Sci 34, 94–103.CrossRefGoogle Scholar
- Zhao, L., Zhou, Y., Gao, Y., Ma, S., Zhang, C., Li, J., Wang, D., Li, X., Li, C., Liu, Y., et al. (2015). Bovine serum albumin nanoparticles for delivery of tacrolimus to reduce its kidney uptake and functional nephrotoxicity. Int J Pharm 483, 180–187.CrossRefPubMedGoogle Scholar
- Zhou, Z., Ma, X., Jin, E., Tang, J., Sui, M., Shen, Y., Van Kirk, E.A., Murdoch, W.J., and Radosz, M. (2013). Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. Biomaterials 34, 5722–5735.CrossRefPubMedGoogle Scholar
- Zhou, Z., Ma, X., Murphy, C.J., Jin, E., Sun, Q., Shen, Y., Van Kirk, E.A., and Murdoch, W.J. (2014). Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy. Angew Chem Int Ed 53, 10949–10955.CrossRefGoogle Scholar
- Zhou, Z., Liu, X., Zhu, D., Wang, Y., Zhang, Z., Zhou, X., Qiu, N., Chen, X., and Shen, Y. (2017). Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv Drug Deliver Rev 115, 115–154.CrossRefGoogle Scholar
- Zhu, A., Miao, K., Deng, Y., Ke, H., He, H., Yang, T., Guo, M., Li, Y., Guo, Z., Wang, Y., et al. (2015). Dually pH/reduction-responsive vesicles for ultrahigh-contrast fluorescence imaging and thermo-chemotherapy-synergized tumor ablation. ACS Nano 9, 7874–7885.CrossRefPubMedGoogle Scholar