Advertisement

Science China Life Sciences

, Volume 61, Issue 4, pp 380–391 | Cite as

Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment

  • Sadaf Hameed
  • Pravin Bhattarai
  • Zhifei Dai
Review
  • 106 Downloads

Abstract

Tumor microenvironment (TME) comprising cellular and non-cellular components is a major source of cancer hallmarks. Notably, angiogenesis responsible for normal physiological remodeling process can otherwise harness vessel abnormalities during tumorigenesis eliciting severe therapeutic inefficiency. Currently, FDA approved antiangiogenic drugs have only shown modest clinical success owing to tumor hypoxia, antiangiogenic therapeutic resistance, and limited knowledge in understanding TME. In order to overcome these limitations, targeting angiogenesis combined with immunosuppressive TME could offer potential therapeutic opportunities. Indeed, these therapeutic approaches can be further revisited with the advent of nanotechnology that can target the key cellular components of TME and tumor cells more precisely. Synergetic targeting without eliciting systemic toxicity achieved by integration of antiangiogenic and immunotherapy in a single nanoplatform is vital for therapeutic success. In this review, we will discuss the most promising nanotechnological advancements oriented to modulate the immunosuppressive TME in association with antiangiogenic therapy that has gained immense popularity in cancer treatment.

Keywords

tumor microenvironment nanoparticles angiogenesis immunosuppression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by National Key Research and Development Program of China (2016YFA0201400) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (81421004).

References

  1. Bhattarai, P., and Dai, Z. (2017). Cyanine based nanoprobes for cancer theranostics. Adv Healthcare Mater 6, 1700262.CrossRefGoogle Scholar
  2. Buckanovich, R.J., Facciabene, A., Kim, S., Benencia, F., Sasaroli, D., Balint, K., Katsaros, D., O’Brien-Jenkins, A., Gimotty, P.A., and Coukos, G. (2008). Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med 14, 28–36.CrossRefPubMedGoogle Scholar
  3. Casazza, A., Laoui, D., Wenes, M., Rizzolio, S., Bassani, N., Mambretti, M., Deschoemaeker, S., Van Ginderachter, J.A., Tamagnone, L., and Mazzone, M. (2013). Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24, 695–709.CrossRefPubMedGoogle Scholar
  4. Casey, S.C., Amedei, A., Aquilano, K., Azmi, A.S., Benencia, F., Bhakta, D., Bilsland, A.E., Boosani, C.S., Chen, S., Ciriolo, M.R., et al. (2015). Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol 35, S199–S223.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chauhan, V.P., Stylianopoulos, T., Martin, J.D., Popovic, Z., Chen, O., Kamoun, W.S., Bawendi, M.G., Fukumura, D., and Jain, R.K. (2012). Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotech 7, 383–388.CrossRefGoogle Scholar
  6. Chen, B., Dai, W., He, B., Zhang, H., Wang, X., Wang, Y., and Zhang, Q. (2017). Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 7, 538–558.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen, Y., Huang, Y., Reiberger, T., Duyverman, A.M., Huang, P., Samuel, R., Hiddingh, L., Roberge, S., Koppel, C., Lauwers, G.Y., et al. (2014). Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology 59, 1435–1447.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Choi, B., Moon, H., Hong, S.J., Shin, C., Do, Y., Ryu, S., and Kang, S. (2016). Effective delivery of antigen-encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic T cell activation and tumor rejection. ACS Nano 10, 7339–7350.CrossRefPubMedGoogle Scholar
  9. Christian, D.A., and Hunter, C.A. (2012). Particle-mediated delivery of cytokines for immunotherapy. Immunotherapy 4, 425–441.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Corzo, C.A., Condamine, T., Lu, L., Cotter, M.J., Youn, J.I., Cheng, P., Cho, H.I., Celis, E., Quiceno, D.G., Padhya, T., et al. (2010). HIF-1a regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207, 2439–2453.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Danhier, F. (2016). To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 244, 108–121.CrossRefPubMedGoogle Scholar
  12. De Palma, M., Biziato, D., and Petrova, T.V. (2017). Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17, 457–474.CrossRefPubMedGoogle Scholar
  13. De Palma, M., Venneri, M.A., Galli, R., Sergi Sergi, L., Politi, L.S., Sampaolesi, M., and Naldini, L. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226.CrossRefPubMedGoogle Scholar
  14. Ding, Y., Liu, J., Lu, S., Igweze, J., Xu, W., Kuang, D., Zealey, C., Liu, D., Gregor, A., Bozorgzad, A., et al. (2016). Self-assembling peptide for codelivery of HIV-1 CD8+ T cells epitope and Toll-like receptor 7/8 agonists R848 to induce maturation of monocyte derived dendritic cell and augment polyfunctional cytotoxic T lymphocyte (CTL) response. J Control Release 236, 22–30.CrossRefPubMedGoogle Scholar
  15. Doedens, A.L., Stockmann, C., Rubinstein, M.P., Liao, D., Zhang, N., DeNardo, D.G., Coussens, L.M., Karin, M., Goldrath, A.W., and Johnson, R.S. (2010). Macrophage expression of hypoxia-inducible factor-1 suppresses T-cell function and promotes tumor progression. Cancer Res 70, 7465–7475.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ebos, J.M.L., and Kerbel, R.S. (2011). Antiangiogenic therapy: impact on invasion, disease progression and metastasis. Nat Rev Clin Oncol 8, 210–221.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Facciabene, A., Motz, G.T., and Coukos, G. (2012). T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 72, 2162–2171.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Facciabene, A., Peng, X., Hagemann, I.S., Balint, K., Barchetti, A., Wang, L.P., Gimotty, P.A., Gilks, C.B., Lal, P., Zhang, L., et al. (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230.CrossRefPubMedGoogle Scholar
  19. Fathallah-Shaykh, H.M., Zhao, L.J., Kafrouni, A.I., Smith, G.M., and Forman, J. (2000). Gene transfer of IFN-gamma into established brain tumors represses growth by antiangiogenesis. J Immunol 164, 217–222.CrossRefPubMedGoogle Scholar
  20. Ferrara, N., and Adamis, A.P. (2016). Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov 15, 385–403.CrossRefPubMedGoogle Scholar
  21. Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29, 15–18.CrossRefPubMedGoogle Scholar
  22. Folkman, J. (2007). Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6, 273–286.CrossRefPubMedGoogle Scholar
  23. Franklin, R.A., Liao, W., Sarkar, A., Kim, M.V., Bivona, M.R., Liu, K., Pamer, E.G., and Li, M.O. (2014). The cellular and molecular origin of tumor-associated macrophages. Science 344, 921–925.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Goel, S., Duda, D.G., Xu, L., Munn, L.L., Boucher, Y., Fukumura, D., and Jain, R.K. (2011). Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91, 1071–1121.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57–70.CrossRefPubMedGoogle Scholar
  26. Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.CrossRefPubMedGoogle Scholar
  27. He, J., Duan, S., Yu, X., Qian, Z., Zhou, S., Zhang, Z., Huang, X., Huang, Y., Su, J., Lai, C., et al. (2016). Folate-modified chitosan nanoparticles containing the IP-10 gene enhance melanoma-specific cytotoxic CD8+ CD28+ T lymphocyte responses. Theranostics 6, 752–761.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hong, J.W., Tobin, N.P., Rundqvist, H., Li, T., Lavergne, M., García-Ibáñez, Y., Qin, H., Paulsson, J., Zeitelhofer, M., Adzemovic, M.Z., et al. (2015). Role of tumor pericytes in the recruitment of myeloid-derived suppressor cells. J Natl Cancer Inst 107, djv209.CrossRefPubMedGoogle Scholar
  29. Irvine, D.J., Hanson, M.C., Rakhra, K., and Tokatlian, T. (2015). Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 115, 11109–11146.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jahanban-Esfahlan, R., de la Guardia, M., Ahmadi, D., and Yousefi, B. (2018). Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol 233, 2019–2031.CrossRefPubMedGoogle Scholar
  31. Jain, R.K. (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62.CrossRefPubMedGoogle Scholar
  32. Jain, R.K. (2014). Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26, 605–622.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jain, S., Tran, T.H., and Amiji, M. (2015). Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials 61, 162–177.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ji, T., Zhao, Y., Ding, Y., and Nie, G. (2013). Using functional nanomaterials to target and regulate the tumor microenvironment: diagnostic and therapeutic applications. Adv Mater 25, 3508–3525.CrossRefPubMedGoogle Scholar
  35. Kandalaft, L.E., Powell, D.J., Jr., Singh, N., and Coukos, G. (2011). Immunotherapy for ovarian cancer: what’s next? J Clin Oncol 29, 925–933.CrossRefPubMedGoogle Scholar
  36. Kang, T.W., Kim, H.S., Lee, B.C., Shin, T.H., Choi, S.W., Kim, Y.J., Lee, H.Y., Jung, Y.K., Seo, K.W., and Kang, K.S. (2015). Mica nanoparticle, STB-HO eliminates the human breast carcinoma cells by regulating the interaction of tumor with its immune microenvironment. Sci Rep 5, 17515.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Khawar, I.A., Kim, J.H., and Kuh, H.J. (2015). Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release 201, 78–89.CrossRefPubMedGoogle Scholar
  38. Kujawski, M., Kortylewski, M., Lee, H., Herrmann, A., Kay, H., and Yu, H. (2008). Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118, 3367–3377.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kwong, B., Gai, S.A., Elkhader, J., Wittrup, K.D., and Irvine, D.J. (2013). Localized immunotherapy via liposome-anchored anti-CD137+ IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Cancer Res 73, 1547–1558.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lai, C., Yu, X., Zhuo, H., Zhou, N., Xie, Y., He, J., Peng, Y., Xie, X., Luo, G., Zhou, S., et al. (2014). Anti-tumor immune response of folateconjugated chitosan nanoparticles containing the IP-10 gene in mice with hepatocellular carcinoma. J Biomed Nanotechnol 10, 3576–3589.CrossRefPubMedGoogle Scholar
  41. Lanitis, E., Irving, M., and Coukos, G. (2015). Targeting the tumor vasculature to enhance T cell activity. Curr Opin Immunol 33, 55–63.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lee, Y.H., Martin-Orozco, N., Zheng, P., Li, J., Zhang, P., Tan, H., Park, H. J., Jeong, M., Chang, S.H., Kim, B.S., et al. (2017). Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res 27, 1034–1045.CrossRefPubMedGoogle Scholar
  43. Li, W., Zhao, X., Du, B., Li, X., Liu, S., Yang, X.Y., Ding, H., Yang, W., Pan, F., Wu, X., et al. (2016). Gold nanoparticle-mediated targeted delivery of recombinant human endostatin normalizes tumour vasculature and improves cancer therapy. Sci Rep 6, 30619.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lin, A.Y., Mattos Almeida, J.P., Bear, A., Liu, N., Luo, L., Foster, A.E., and Drezek, R.A. (2013). Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLoS ONE 8, e63550.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Liu, J.Y., Chiang, T., Liu, C.H., Chern, G.G., Lin, T.T., Gao, D.Y., and Chen, Y. (2015). Delivery of siRNA using CXCR4-targeted nanoparticles modulates tumor microenvironment and achieves a potent antitumor response in liver cancer. Mol Ther 23, 1772–1782.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Liu, J., Ma, X., Jin, S., Xue, X., Zhang, C., Wei, T., Guo, W., and Liang, X. J. (2016a). Zinc oxide nanoparticles as adjuvant to facilitate doxorubicin intracellular accumulation and visualize pH-responsive release for overcoming drug resistance. Mol Pharm 13, 1723–1730.CrossRefPubMedGoogle Scholar
  47. Liu, P., Zhang, H., Wu, X., Guo, L., Wang, F., Xia, G., Chen, B., Yin, H.X., Wang, Y., and Li, X. (2016b). Tf-PEG-PLL-PLGA nanoparticles enhanced chemosensitivity for hypoxia-responsive tumor cells. Onco Tar-gets Ther Volume 9, 5049–5059.CrossRefGoogle Scholar
  48. Margaroni, M., Agallou, M., Kontonikola, K., Karidi, K., Kammona, O., Kiparissides, C., Gaitanaki, C., and Karagouni, E. (2016). PLGA nanoparticles modified with a TNFα mimicking peptide, soluble Leishmania antigens and MPLA induce T cell priming in vitro via dendritic cell functional differentiation. Eur J Pharm BioPharm 105, 18–31.CrossRefPubMedGoogle Scholar
  49. McDonald, P.C., Chafe, S.C., and Dedhar, S. (2016). Overcoming hypoxiamediated tumor progression: combinatorial approaches targeting pH regulation, angiogenesis and immune dysfunction. Front Cell Dev Biol in press doi: 10.3389/fcell.2016.00027.Google Scholar
  50. McIntyre, A., and Harris, A.L. (2015). Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. EMBO Mol Med 7, 368–379.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Molon, B., Ugel, S., Del Pozzo, F., Soldani, C., Zilio, S., Avella, D., De Palma, A., Mauri, P.L., Monegal, A., Rescigno, M., et al. (2011). Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208, 1949–1962.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Motz, G.T., and Coukos, G. (2011). The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 11, 702–711.CrossRefPubMedGoogle Scholar
  53. Murata, N., Takashima, Y., Toyoshima, K., Yamamoto, M., and Okada, H. (2008). Anti-tumor effects of anti-VEGF siRNA encapsulated with PLGA microspheres in mice. J Control Release 126, 246–254.CrossRefPubMedGoogle Scholar
  54. Murdoch, C., Giannoudis, A., and Lewis, C.E. (2004). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224–2234.CrossRefPubMedGoogle Scholar
  55. Murdoch, C., Muthana, M., Coffelt, S.B., and Lewis, C.E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8, 618–631.CrossRefPubMedGoogle Scholar
  56. Nagasawa, H., Uto, Y., Kirk, K.L., and Hori, H. (2006). Design of hypoxiatargeting drugs as new cancer chemotherapeutics. Biol Pharmaceut Bull 29, 2335–2342.CrossRefGoogle Scholar
  57. Niu, M., Valdes, S., Naguib, Y.W., Hursting, S.D., and Cui, Z. (2016). Tumor-associated macrophage-mediated targeted therapy of triple-negative breast cancer. Mol Pharm 13, 1833–1842.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Noman, M.Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., Bronte, V., and Chouaib, S. (2014). PD-L1 is a novel direct target of HIF-1a, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211, 781–790.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pan, P.Y., Ma, G., Weber, K.J., Ozao-Choy, J., Wang, G., Yin, B., Divino, C.M., and Chen, S.H. (2010). Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 70, 99–108.CrossRefPubMedGoogle Scholar
  60. Prasad, P., Gordijo, C.R., Abbasi, A.Z., Maeda, A., Ip, A., Rauth, A.M., DaCosta, R.S., and Wu, X.Y. (2014). Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 8, 3202–3212.CrossRefPubMedGoogle Scholar
  61. Qian, C., Yu, J., Chen, Y., Hu, Q., Xiao, X., Sun, W., Wang, C., Feng, P., Shen, Q.D., and Gu, Z. (2016). Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv Mater 28, 3313–3320.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Qian, Y., Qiao, S., Dai, Y., Xu, G., Dai, B., Lu, L., Yu, X., Luo, Q., and Zhang, Z. (2017). Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano 11, 9536–9549.CrossRefPubMedGoogle Scholar
  63. Quail, D.F., and Joyce, J.A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nat Med 19, 1423–1437.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Riabov, V., Gudima, A., Wang, N., Mickley, A., Orekhov, A., and Kzhyshkowska, J. (2014). Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 5, 75.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Samples, J., Willis, M., and Klauber-Demore, N. (2013). Targeting angiogenesis and the tumor microenvironment. Surg Oncol Clinics North Am 22, 629–639.CrossRefGoogle Scholar
  66. Shrimali, R.K., Yu, Z., Theoret, M.R., Chinnasamy, D., Restifo, N.P., and Rosenberg, S.A. (2010). Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 70, 6171–6180.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sierra, J.R., Corso, S., Caione, L., Cepero, V., Conrotto, P., Cignetti, A., Piacibello, W., Kumanogoh, A., Kikutani, H., Comoglio, P.M., et al. (2008). Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. J Exp Med 205, 1673–1685.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Song, M., Liu, T., Shi, C., Zhang, X., and Chen, X. (2016). Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 10, 633–647.CrossRefPubMedGoogle Scholar
  69. Squadrito, M.L., and De Palma, M. (2011). Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol Aspects Med 32, 123–145.CrossRefPubMedGoogle Scholar
  70. Swift, M.R., and Weinstein, B.M. (2009). Arterial-venous specification during development. Circul Res 104, 576–588.CrossRefGoogle Scholar
  71. Teo, P.Y., Yang, C., Whilding, L.M., Parente-Pereira, A.C., Maher, J., George, A.J.T., Hedrick, J.L., Yang, Y.Y., and Ghaem-Maghami, S. (2015). Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing. Adv Healthcare Mater 4, 1180–1189.CrossRefGoogle Scholar
  72. Thambi, T., Park, J.H., and Lee, D.S. (2016). Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives. Chem Commun 52, 8492–8500.CrossRefGoogle Scholar
  73. Turrini, R., Pabois, A., Xenarios, I., Coukos, G., Delaloye, J.F., and Doucey, M.A. (2017). TIE-2 expressing monocytes in human cancers. OncoImmunology 6, e1303585.CrossRefPubMedPubMedCentralGoogle Scholar
  74. von Roemeling, C., Jiang, W., Chan, C.K., Weissman, I.L., and Kim, B.Y.S. (2017). Breaking down the barriers to precision cancer nanomedicine. Trends Biotech 35, 159–171.CrossRefGoogle Scholar
  75. Voron, T., Marcheteau, E., Pernot, S., Colussi, O., Tartour, E., Taieb, J., and Terme, M. (2014). Control of the immune response by pro-angiogenic factors. Front Oncol 4, 70.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wang, Y., Yang, Y., Zhe, H., He, Z., and Zhou, S. (2014). Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties. Drug Design Dev Ther 8, 2075–2088.Google Scholar
  77. Wei, M., Chen, N., Li, J., Yin, M., Liang, L., He, Y., Song, H., Fan, C., and Huang, Q. (2012). Polyvalent immunostimulatory nanoagents with selfassembled CpG oligonucleotide-conjugated gold nanoparticles. Angew Chem Int Ed 51, 1202–1206.CrossRefGoogle Scholar
  78. Weis, S.M., and Cheresh, D.A. (2011). Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17, 1359–1370.CrossRefPubMedGoogle Scholar
  79. Xie, B., Wang, D.H., and Spechler, S.J. (2012). Sorafenib for treatment of hepatocellular carcinoma: a systematic review. Dig Dis Sci 57, 1122–1129.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zanganeh, S., Hutter, G., Spitler, R., Lenkov, O., Mahmoudi, M., Shaw, A., Pajarinen, J.S., Nejadnik, H., Goodman, S., Moseley, M., et al. (2016). Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotech 11, 986–994.CrossRefGoogle Scholar
  81. Zhang, B., Jin, K., Jiang, T., Wang, L., Shen, S., Luo, Z., Tuo, Y., Liu, X., Hu, Y., and Pang, Z. (2017a). Celecoxib normalizes the tumor microenvironment and enhances small nanotherapeutics delivery to A549 tumors in nude mice. Sci Rep 7, 10071.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhang, H., Li, L., Liu, X.L., Jiao, J., Ng, C.T., Yi, J.B., Luo, Y.E., Bay, B. H., Zhao, L.Y., Peng, M.L., et al. (2017b). Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent. ACS Nano 11, 3614–3631.CrossRefPubMedGoogle Scholar
  83. Zhang, M., Yan, L., and Kim, J.A. (2015). Modulating mammary tumor growth, metastasis and immunosuppression by siRNA-induced MIF reduction in tumor microenvironment. Cancer Gene Ther 22, 463–474.CrossRefPubMedGoogle Scholar
  84. Zhao, Y., Huo, M., Xu, Z., Wang, Y., and Huang, L. (2015). Nanoparticle delivery of CDDO-Me remodels the tumor microenvironment and enhances vaccine therapy for melanoma. Biomaterials 68, 54–66.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zhu, P., Hu, C., Hui, K., and Jiang, X. (2017). The role and significance of VEGFR2+ regulatory T cells in tumor immunity. Onco Targets Ther 10, 4315–4319.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations