Skip to main content
Log in

Whole body vibration with rest days could improve bone quality of distal femoral metaphysis by regulating trabecular arrangement

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Low-magnitude, high-frequency vibration (LMHFV) with rest days (particularly seven rest days) was considerably effective in improving the morphological and mechanical properties of rat proximal femur. However, current knowledge is limited regarding the possible benefit of this mechanical regimen to other bone sites and whether the optimal rest days are the same. This study followed our previous experiment on LMHFV loading with rest days for three-month-old male Wistar rats. The experiment involved seven groups, namely, vibrational loading for X day followed with X day rest (X=1, 3, 5, 7), daily vibrational loading, tail suspension and baseline control. Micro-computed tomography (micro-CT) scanning was used to evaluate the microarchitecture of the distal femoral trabecular bone. Micro-CT image-based microfinite element analysis was performed for each distal femoral metaphysis. LMHFV with rest days substantially changed the trabecular arrangement from remarkably plate-like to rod-like. Vibrational loading with 1 day rest was substantially effective in improving the architecture and apparent- and tissuelevel mechanical properties of the rat distal femoral metaphysis. This study may provide an improved understanding of the sitespecific responses of bone tissue to LMHFV with rest days for a substantially effective therapy of a targeted bone site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brennan, M.A., Gleeson, J.P., O'Brien, F.J., and McNamara, L.M. (2014). Effects of ageing, prolonged estrogen deficiency and zoledronate on bone tissue mineral distribution. J Mech Behav Biomed Mater 29, 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Coughlin, T.R., and Niebur, G.L. (2012). Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration. J Bio-Mech 45, 2222–2229.

    Google Scholar 

  • Dempster, D.W., Compston, J.E., Drezner, M.K., Glorieux, F.H., Kanis, J. A., Malluche, H., Meunier, P.J., Ott, S.M., Recker, R.R., and Parfitt, A. M. (2013). Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28, 2–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, J., Gong, H., Huang, X., Zhang, R., Ma, R., and Zhu, D. (2016). Multi-level assessment of fracture calluses in rats subjected to lowmagnitude high-frequency vibration with different rest periods. Ann Biomed Eng 44, 2489–2504.

    Article  PubMed  Google Scholar 

  • Gong, H., Zhang, M., Yeung, H.Y., and Qin, L. (2005). Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Miner Metab 23, 174–180.

    Article  PubMed  Google Scholar 

  • Gong, H., Zhang, M., Fan, Y., Kwok, W.L., and Leung, P.C. (2012). Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology. Ann Biomed Eng 40, 1575–1585.

    Article  PubMed  Google Scholar 

  • Hildebrand, T., and Rüegsegger, P. (1997). Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Eng 1, 15–23.

    Article  Google Scholar 

  • Homminga, J., McCreadie, B.R., Ciarelli, T.E., Weinans, H., Goldstein, S. A., and Huiskes, R. (2002). Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone 30, 759–764.

    Article  CAS  PubMed  Google Scholar 

  • Judex, S., Koh, T.J., and Xie, L. (2015). Modulation of bone’s sensitivity to low-intensity vibrations by acceleration magnitude, vibration duration, and number of bouts. Osteoporos Int 26, 1417–1428.

    Article  CAS  PubMed  Google Scholar 

  • Liang, Y.Q., Qi, M.C., Xu, J., Xu, J., Liu, H.W., Dong, W., Li, J.Y., and Hu, M. (2014). Low-magnitude high-frequency loading, by whole-body vibration, accelerates early implant osseointegration in ovariectomized rats. Mol Med Rep 10, 2835–2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lü, L., Meng, G., Gong, H., Zhu, D., Gao, J., and Fan, Y. (2015). Tissue level microstructure and mechanical properties of the femoral head in the proximal femur of fracture patients. Acta Mech Sin 31, 259–267.

    Article  Google Scholar 

  • Ma, R., Zhu, D., Gong, H., Gu, G., Huang, X., Gao, J., and Zhang, X. (2012). High-frequency and low-magnitude whole body vibration with rest days is more effective in improving skeletal micro-morphology and biomechanical properties in ovariectomised rodents. HIP Int 22, 218–226.

    Article  PubMed  Google Scholar 

  • Mullins, L.P., Bruzzi, M.S., and McHugh, P.E. (2009). Calibration of a constitutive model for the post-yield behaviour of cortical bone. J Mech Behav Biomed Mater 2, 460–470.

    Article  CAS  PubMed  Google Scholar 

  • Olivares, A.L., Marsal, E., Planell, J.A., and Lacroix, D. (2009). Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30, 6142–6149.

    Article  CAS  PubMed  Google Scholar 

  • Ozcivici, E., Garman, R., and Judex, S. (2007). High-frequency oscillatory motions enhance the simulated mechanical properties of non-weight bearing trabecular bone. J Biomech 40, 3404–3411.

    Article  PubMed  Google Scholar 

  • Ozcivici, E., and Judex, S. (2014). Trabecular bone recovers from mechanical unloading primarily by restoring its mechanical function rather than its morphology. Bone 67, 122–129.

    Article  PubMed  Google Scholar 

  • Pasqualini, M., Lavet, C., Elbadaoui, M., Vanden-Bossche, A., Laroche, N., Gnyubkin, V., and Vico, L. (2013). Skeletal site-specific effects of whole body vibration in mature rats: from deleterious to beneficial frequency-dependent effects. Bone 55, 69–77.

    Article  PubMed  Google Scholar 

  • Reyes, M.L., Hernández, M., Holmgren, L.J., Sanhueza, E., and Escobar, R.G. (2011). High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children. J Bone Miner Res 26, 1759–1766.

    Article  PubMed  Google Scholar 

  • Robling, A.G., Burr, D.B., and Turner, C.H. (2001). Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol 204, 3389–3399.

    CAS  PubMed  Google Scholar 

  • Robling, A.G., Hinant, F.M., Burr, D.B., and Turner, C.H. (2002). Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res 17, 1545–1554.

    Article  PubMed  Google Scholar 

  • Rubin, C., Recker, R., Cullen, D., Ryaby, J., McCabe, J., and McLeod, K. (2004). Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 19, 343–351.

    Article  PubMed  Google Scholar 

  • Sen, B., Xie, Z., Case, N., Styner, M., Rubin, C.T., and Rubin, J. (2011). Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J Biomech 44, 593–599.

    Article  PubMed  Google Scholar 

  • Srinivasan, S., Weimer, D.A., Agans, S.C., Bain, S.D., and Gross, T.S. (2002). Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J Bone Miner Res 17, 1613–1620.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao, Z.S., Zhou, W.S., Tu, K., Huang, Z.L., Zhou, Q., Sun, T., Lv, Y.X., Cui, W., and Yang, L. (2015). Effect exerted by teriparatide upon repair function of β-tricalcium phosphate to ovariectomised rat’s femoral metaphysis defect caused by osteoporosis. Injury 46, 2134–2141.

    Article  PubMed  Google Scholar 

  • Van Rietbergen, B., Huiskes, R., Eckstein, F., and Rüegsegger, P. (2003). Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res 18, 1781–1788.

    Article  PubMed  Google Scholar 

  • Wehrle, E., Liedert, A., Heilmann, A., Wehner, T., Bindl, R., Fischer, L., Haffner-Luntzer, M., Jakob, F., Schinke, T., Amling, M., et al. (2015). The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice. Dis Model Mech 8, 93–104.

    Article  CAS  PubMed  Google Scholar 

  • Willinghamm, M.D., Brodt, M.D., Lee, K.L., Stephens, A.L., Ye, J., and Silva, M.J. (2010). Age-related changes in bone structure and strength in female and male BALB/c mice. Calcif Tissue Int 86, 470–483.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Gong, H., and Zhang, M. (2012). Transmissibility of whole body vibration stimuli through human body in different standing postures. J Mech Med Biol 12, 1250047.

    Article  Google Scholar 

  • Yang, X., Muthukumaran, P., DasDe, S., Teoh, S.H., Choi, H., Lim, S.K., and Lee, T. (2013). Positive alterations of viscoelastic and geometric properties in ovariectomized rat femurs with concurrent administration of ibandronate and PTH. Bone 52, 308–317.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, R., Gong, H., Zhu, D., Gao, J., Fang, J., and Fan, Y. (2014). Seven day insertion rest in whole body vibration improves multi-level bone quality in tail suspension rats. PLoS ONE 9, e92312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, R., Gong, H., Zhu, D., Ma, R., Fang, J., and Fan, Y. (2015). Multilevel femoral morphology and mechanical properties of rats of different ages. Bone 76, 76–87.

    Article  PubMed  Google Scholar 

  • Zhang, X., and Gong, H. (2015). Simulation on tissue differentiations for different architecture designs in bone tissue engineering scaffold based on cellular structure model. J Mech Med Biol 15, 1550028.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81471753, 11432016, 11322223) and the Science and Technology Development Plan Projects of Jilin province (20160101297JC, 20170519008JH, 20170520093JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, H., Zhang, R., Gao, J. et al. Whole body vibration with rest days could improve bone quality of distal femoral metaphysis by regulating trabecular arrangement. Sci. China Life Sci. 62, 95–103 (2019). https://doi.org/10.1007/s11427-017-9253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9253-x

Keywords

Navigation