Science China Life Sciences

, Volume 61, Issue 2, pp 135–137 | Cite as

Plant non-coding RNAs and epigenetics

Editorial

References

  1. Chen, W., Yu, Z., Kong, J., Wang, H., Li, Y., Zhao, M., Wang, X., Zheng, Q., Shi, N., Zhang, P., Zhong, S., Hunter, P., Tör, M., and Hong, Y. (2018). Comparative WGBS identifies genes that influence non-ripe phenotype in tomato epimutant Colourless non-ripening. Sci China Life Sci 61, https://doi.org/10.1007/s11427-017-9206-5.Google Scholar
  2. Cheng, L., Shafiq, S., Xu, W., and Sun, Q. (2018). EARLY FLOWERING IN SHORT DAYS (EFS) regulates the seed size in Arabidopsis. Sci China Life Sci 61, https://doi.org/10.1007/s11427-017-9236-x.Google Scholar
  3. Cheng, J., Zhang, Y., Li, Z., Wang, T., Zhang, X., and Zheng, B. (2018). A lariat-derived circular RNA is required for plant development in Arabidopsis. Sci China Life Sci 61.Google Scholar
  4. Deng, P., Liu, S., Nie, X., Weining, S., and Wu, L. (2018). Conservation analysis of long non-coding RNAs in plants. Sci China Life Sci 61.Google Scholar
  5. Deng, Y., Liu, M., Li, X., and Li, F. (2018). microRNA-mediated R gene regulation: molecular scabbards for double-edged swords. Sci China Life Sci 61, https://doi.org/10.1007/s11427-017-9237-4.Google Scholar
  6. Kim, S.Y., He, Y., Jacob, Y., Noh, Y.S., Michaels, S., and Amasino, R. (2005). Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase. Plant Cell 17, 3301–3310.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Lin, G., Zhou, Y., Li, M., and Fang, Y. (2018). Histone 3 lysine 36 to methionine mutations stably interact with and sequester SDG8 in Arabidopsis thaliana. Sci China Life Sci 61.Google Scholar
  8. Liu, R., Li, X., Chen, W., and Du, J. (2018). Structure and mechanism of plant histone mark readers. Sci China Life Sci 61.Google Scholar
  9. Luo, Y.X., Han, Y.F., Zhao, Q.Y., Du, J.L., Dou, K., Li, L., Chen, S., and He, X.J. (2018). Sumoylation of SUVR2 contributes to its role in tra- nscriptional gene silencing. Sci China Life Sci 61.Google Scholar
  10. Thorstensen, T., Fischer, A., Sandvik, S.V., Johnsen, S.S., Grini, P.E., Reuter, G., and Aalen, R.B. (2006). The Arabidopsis SUVR4 protein is a nucleolar histone methyltransferase with preference for monomethylated H3K9. Nucleic Acids Res 34, 5461–5470.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Wang, Y., Li, J., Deng, X. W., and Zhu, D. (2018). Arabidopsis noncoding RNA modulates seedling greening during deetiolation. Sci China Life Sci 61, 1–5. 10.1007/s11427-017-9187-9.Google Scholar
  12. Xu, L., Hu, Y., Cao, Y., Li, J., Ma, L., Li, Y., and Qi, Y. (2018). An expression atlas of miRNAs in Arabidopsis thaliana. Sci China Life Sci 61, 1–12. 10.1007/s11427-017-9199-1.CrossRefGoogle Scholar
  13. Yan, J., Zhang, Q., and Yin, P. (2018). RNA editing machinery in plant organelles. Sci China Life Sci 61.Google Scholar
  14. Yu, Y., Zhou, Y., Zhang, Y., and Chen, Y. (2018). Grass phasiRNAs and male fertility. Sci China Life Sci 61.Google Scholar
  15. Zhao, Z., Yu, Y., Meyer, D., Wu, C., and Shen, W.H. (2005). Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol 7, 1256–1260.CrossRefPubMedGoogle Scholar
  16. Zhu, L., Ow, D.W., and Dong, Z. (2018). Transfer RNA-derived small RNAs in plants. Sci China Life Sci 61.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE)Shanghai Institutes for Biological Sciences (SIBS)ShanghaiChina
  2. 2.ShanghaiTech UniversityShanghaiChina
  3. 3.Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
  4. 4.Tsinghua-Peking Center for Life SciencesBeijingChina

Personalised recommendations