Advertisement

Science China Life Sciences

, Volume 61, Issue 2, pp 138–147 | Cite as

microRNA-mediated R gene regulation: molecular scabbards for double-edged swords

  • Yingtian Deng
  • Minglei Liu
  • Xiaofei Li
  • Feng Li
Review

Abstract

Plant resistance (R) proteins are immune receptors that recognize pathogen effectors and trigger rapid defense responses, namely effector-triggered immunity. R protein-mediated pathogen resistance is usually race specific. During plant-pathogen coevolution, plant genomes accumulated large numbers of R genes. Even though plant R genes provide important natural resources for breeding disease-resistant crops, their presence in the plant genome comes at a cost. Misregulation of R genes leads to developmental defects, such as stunted growth and reduced fertility. In the past decade, many microRNAs (miRNAs) have been identified to target various R genes in plant genomes. miRNAs reduce R gene levels under normal conditions and allow induction of R gene expression under various stresses. For these reasons, we consider R genes to be double-edged “swords” and miRNAs as molecular “scabbards”. In the present review, we summarize the contributions and potential problems of these “swords” and discuss the features and production of the “scabbards”, as well as the mechanisms used to pull the “sword” from the “scabbard” when needed.

Keywords

NLR innate immunity siRNA miRNA crop disease breeding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91440103, 31600984) and Fundamental Research Funds for the Central Universities (2662014PY008).

References

  1. Allard, H.A. (1912). The mosaic disease of tobacco. Science 36, 875–876.PubMedCrossRefGoogle Scholar
  2. Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221.PubMedCrossRefGoogle Scholar
  3. Allen, E., Xie, Z., Gustafson, A.M., Sung, G.H., Spatafora, J.W., and Carrington, J.C. (2004). Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36, 1282–1290.PubMedCrossRefGoogle Scholar
  4. Anderson, P.A., Lawrence, G.J., Morrish, B.C., Ayliffe, M.A., Finnegan, E. J., and Ellis, J.G. (1997). Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9, 641–651.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arikit, S., Xia, R., Kakrana, A., Huang, K., Zhai, J., Yan, Z., Valdés-López, O., Prince, S., Musket, T.A., Nguyen, H.T., Stacey, G., and Meyers, B. C. (2014). An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. Plant Cell 26, 4584–4601.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Austin, M.J., Muskett, P., Kahn, K., Feys, B.J., Jones, J.D.G., and Parker, J. E. (2002). Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295, 2077–2080.PubMedCrossRefGoogle Scholar
  7. Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K., and Schulze-Lefert, P. (2002). The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295, 2073–2076.PubMedCrossRefGoogle Scholar
  8. Baker, B., Zambryski, P., Staskawicz, B., and Dinesh-Kumar, S.P. (1997). Signaling in plant-microbe interactions. Science 276, 726–733.PubMedCrossRefGoogle Scholar
  9. Baumberger, N., and Baulcombe, D.C. (2005). Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102, 11928–11933.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bendahmane, A., Kanyuka, K., and Baulcombe, D.C. (1999). The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–792.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bigeard, J., Colcombet, J., and Hirt, H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant 8, 521–539.PubMedCrossRefGoogle Scholar
  12. Boccara, M., Sarazin, A., Thiébeauld, O., Jay, F., Voinnet, O., Navarro, L., and Colot, V. (2014). The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog 10, e1003883.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bomblies, K., and Weigel, D. (2007). Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat Rev Genet 8, 382–393.PubMedCrossRefGoogle Scholar
  14. Carra, A., Mica, E., Gambino, G., Pindo, M., Moser, C., Pè, M.E., and Schubert, A. (2009). Cloning and characterization of small non-coding RNAs from grape. Plant J 59, 750–763.PubMedCrossRefGoogle Scholar
  15. Chae, E., Bomblies, K., Kim, S.T., Karelina, D., Zaidem, M., Ossowski, S., Martín-Pizarro, C., Laitinen, R.A.E., Rowan, B.A., Tenenboim, H., Lechner, S., Demar, M., Habring-Müller, A., Lanz, C., Rätsch, G., and Weigel, D. (2014). Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 159, 1341–1351.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chapman, E.J., Prokhnevsky, A.I., Gopinath, K., Dolja, V.V., and Carrington, J.C. (2004). Viral RNA silencing suppressors inhibit the micro-RNA pathway at an intermediate step. Genes Dev 18, 1179–1186.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen, H.M., Chen, L.T., Patel, K., Li, Y.H., Baulcombe, D.C., and Wu, S. H. (2010). 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107, 15269–15274.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen, X. (2005). microRNA biogenesis and function in plants. FEBS Lett 579, 5923–5931.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen, X.M. (2009). Small RNAs and their roles in plant development. In: Annual Review of Cell and Developmental Biology. (Palo Alto: Annual Reviews), pp. 21–44.Google Scholar
  20. Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J. (2006). Hostmicrobe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814.PubMedCrossRefGoogle Scholar
  21. Claverie, M., Dirlewanger, E., Bosselut, N., Van Ghelder, C., Voisin, R., Kleinhentz, M., Lafargue, B., Abad, P., Rosso, M.N., Chalhoub, B., and Esmenjaud, D. (2011). The Ma gene for complete-spectrum resistance to meloidogyne species in prunus is a TNL with a huge repeated Cterminal post-LRR region. Plant Physiol 156, 779–792.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Crute, I.R., and Pink, D. (1996). Genetics and utilization of pathogen resistance in plants. Plant Cell 8, 1747–1755.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cui, H., Tsuda, K., and Parker, J.E. (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66, 487–511.PubMedCrossRefGoogle Scholar
  24. Cuperus, J.T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R.T., Takeda, A., Sullivan, C.M., Gilbert, S.D., Montgomery, T.A., and Carrington, J.C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17, 997–1003.PubMedPubMedCentralCrossRefGoogle Scholar
  25. de Vries, S., Kloesges, T., and Rose, L.E. (2015). Evolutionarily dynamic, but robust, targeting of resistance genes by the miR482/2118 gene family in the solanaceae. Genome Biol Evol 7, 3307–3321.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Díaz-Pendón, J.A., and Ding, S.W. (2008). Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol 46, 303–326.PubMedCrossRefGoogle Scholar
  27. Dodds, P.N., Lawrence, G.J., and Ellis, J.G. (2001). Six amino acid changes confined to the leucine-rich repeat beta-strand/beta-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell 13, 163–178.PubMedPubMedCentralGoogle Scholar
  28. Du, B., Zhang, W., Liu, B., Hu, J., Wei, Z., Shi, Z., He, R., Zhu, L., Chen, R., Han, B., and He, G. (2009). Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA 106, 22163–22168.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dunoyer, P., Himber, C., and Voinnet, O. (2006). Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38, 258–263.PubMedCrossRefGoogle Scholar
  30. Ellis, J.G., Lawrence, G.J., Luck, J.E., and Dodds, P.N. (1999). Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11, 495–506.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fahlgren, N., Howell, M.D., Kasschau, K.D., Chapman, E.J., Sullivan, C. M., Cumbie, J.S., Givan, S.A., Law, T.F., Grant, S.R., Dangl, J.L., and Carrington, J.C. (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of miRNA genes. PLoS ONE 2, e219.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fan, Y., Yang, J., Mathioni, S.M., Yu, J., Shen, J., Yang, X., Wang, L., Zhang, Q., Cai, Z., Xu, C., Li, X., Xiao, J., Meyers, B.C., and Zhang, Q. (2016). PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci USA 113, 15144–15149.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fei, Q., Li, P., Teng, C., and Meyers, B.C. (2015). Secondary siRNAs from Medicago NB-LRRs modulated via miRNA-target interactions and their abundances. Plant J 83, 451–465.PubMedCrossRefGoogle Scholar
  34. Feng, J., Liu, S., Wang, M., Lang, Q., and Jin, C. (2014). Identification of microRNAs and their targets in tomato infected with Cucumber mosaic virus based on deep sequencing. Planta 240, 1335–1352.PubMedCrossRefGoogle Scholar
  35. Flor, H.H. (1947). Inheritance of reaction to rust in flax. J Agric Res 74, 241–262.Google Scholar
  36. Hajjar, R., and Hodgkin, T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156, 1–13.CrossRefGoogle Scholar
  37. Han, L., Weng, K., Ma, H., Xiang, G., Li, Z., Wang, Y., Liu, G., and Xu, Y. (2016). Identification and characterization of erysiphe necator-responsive microRNAs in Chinese wild vitis pseudoreticulata by high-throughput sequencing. Front Plant Sci 7, 621.PubMedPubMedCentralGoogle Scholar
  38. He, X.F., Fang, Y.Y., Feng, L., and Guo, H.S. (2008). Characterization of conserved and novel microRNAs and their targets, including a TuMVinduced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 582, 2445–2452.PubMedCrossRefGoogle Scholar
  39. Holmes, F.O. (1938). Inheritance of resistance to tobacco-mosaic disease in tobacco. Phytopathology 28, 553–561.Google Scholar
  40. Hong, H., Liu, Y., Zhang, H., Xiao, J., Li, X., and Wang, S. (2015). Small RNAs and gene network in a durable disease resistance gene-mediated defense responses in rice. PLoS ONE 10, e0137360.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hoyt, E. (1988). Conserving the Wild Relatives of Crops. (Rome: IBPGR, IUCN, WWF).Google Scholar
  42. Schultes, R.E. (1989). Conserving the wild relatives of crops. Econ Bot 43, 191–191.CrossRefGoogle Scholar
  43. Islam, M.R., and Shepherd, K.W. (1991). Present status of genetics of rust resistance in flax. Euphytica 55, 255–267.CrossRefGoogle Scholar
  44. Jagadeeswaran, G., Zheng, Y., Li, Y.F., Shukla, L.I., Matts, J., Hoyt, P., Macmil, S.L., Wiley, G.B., Roe, B.A., Zhang, W., and Sunkar, R. (2009). Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol 184, 85–98.PubMedCrossRefGoogle Scholar
  45. Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., Appels, R., Pfeifer, M., Tao, Y., Zhang, X., Jing, R., Zhang, C., Ma, Y., Gao, L., Gao, C., Spannagl, M., Mayer, K.F.X., Li, D., Pan, S., Zheng, F., Hu, Q., Xia, X., Li, J., Liang, Q., Chen, J., Wicker, T., Gou, C., Kuang, H., He, G., Luo, Y., Keller, B., Xia, Q., Lu, P., Wang, J., Zou, H., Zhang, R., Xu, J., Gao, J., Middleton, C., Quan, Z., Liu, G., Wang, J., Wang, J., Yang, H., Liu, X., He, Z., Mao, L., and Wang, J. (2013). Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 91–95.PubMedCrossRefGoogle Scholar
  46. Khalid, A., Zhang, Q., Yasir, M., and Li, F. (2017). Small RNA based genetic engineering for plant viral resistance: application in crop protection. Front Microbiol 8, 43.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kozomara, A., and Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42, D68–D73.PubMedCrossRefGoogle Scholar
  48. Kundu, A., Paul, S., Dey, A., and Pal, A. (2017). High throughput sequencing reveals modulation of microRNAs in Vigna mungo upon Mungbean Yellow Mosaic India Virus inoculation highlighting stress regulation. Plant Sci 257, 96–105.PubMedCrossRefGoogle Scholar
  49. Lawrence, G.J., Finnegan, E.J., Ayliffe, M.A., and Ellis, J.G. (1995). The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7, 1195–1206.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lelandais-Brière, C., Naya, L., Sallet, E., Calenge, F., Frugier, F., Hartmann, C., Gouzy, J., and Crespi, M. (2009). Genome-wide medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21, 2780–2796.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Li, F., and Ding, S.W. (2006). Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 60, 503–531.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Li, F., Orban, R., and Baker, B. (2012a). SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. Plant J 70, 891–901.PubMedCrossRefGoogle Scholar
  53. Li, F., Pignatta, D., Bendix, C., Brunkard, J.O., Cohn, M.M., Tung, J., Sun, H., Kumar, P., and Baker, B. (2012b). microRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA 109, 1790–1795.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lian, S., Cho, W.K., Kim, S.M., Choi, H., and Kim, K.H. (2016). Timecourse small RNA profiling reveals rice miRNAs and their target genes in response to rice stripe virus infection. PLoS ONE 11, e0162319.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Liang, G., Li, Y., He, H., Wang, F., and Yu, D. (2013). Identification of miRNAs and miRNA-mediated regulatory pathways in Carica papaya. Planta 238, 739–752.PubMedCrossRefGoogle Scholar
  56. Lu, C., Kulkarni, K., Souret, F.F., MuthuValliappan, R., Tej, S.S., Poethig, R.S., Henderson, I.R., Jacobsen, S.E., Wang, W., Green, P.J., and Meyers, B.C. (2006). microRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16, 1276–1288.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lu, S., Sun, Y.H., Amerson, H., and Chiang, V.L. (2007). microRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51, 1077–1098.PubMedCrossRefGoogle Scholar
  58. Lu, S., Sun, Y.H., Shi, R., Clark, C., Li, L., and Chiang, V.L. (2005). Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17, 2186–2203.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lucas, S.J., Baştaş, K., and Budak, H. (2014). Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene 536, 254–264.PubMedCrossRefGoogle Scholar
  60. Luo, Y., Ma, T., Zhang, A., Ong, K.H., Li, Z., Yang, J., and Yin, Z. (2016). Marker-assisted breeding of the rice restorer line Wanhui 6725 for disease resistance, submergence tolerance and aromatic fragrance. Rice 9, 66.PubMedPubMedCentralCrossRefGoogle Scholar
  61. McHale, M., Eamens, A.L., Finnegan, E.J., and Waterhouse, P.M. (2013). A 22-nt artificial microRNA mediates widespread RNA silencing in Arabidopsis. Plant J 76, 519–529.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Meyers, B.C., Kozik, A., Griego, A., Kuang, H., and Michelmore, R.W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15, 809–834.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Milligan, S.B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P., and Williamson, V.M. (1998). The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucinerich repeat family of plant genes. Plant Cell 10, 1307–1320.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ouyang, S., Park, G., Atamian, H.S., Han, C.S., Stajich, J.E., Kaloshian, I., and Borkovich, K.A. (2014). microRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS Pathog 10, e1004464.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Qiao, Y., Liu, L., Xiong, Q., Flores, C., Wong, J., Shi, J., Wang, X., Liu, X., Xiang, Q., Jiang, S., Zhang, F., Wang, Y., Judelson, H.S., Chen, X., and Ma, W. (2013). Oomycete pathogens encode RNA silencing suppressors. Nat Genet 45, 330–333.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Rossi, M., Goggin, F.L., Milligan, S.B., Kaloshian, I., Ullman, D.E., and Williamson, V.M. (1998). The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95, 9750–9754.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Schornack, S., Ballvora, A., Gürlebeck, D., Peart, J., Ganal, M., Baker, B., Bonas, U., and Lahaye, T. (2004). The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37, 46–60.PubMedCrossRefGoogle Scholar
  68. Shi, T., Wang, K., and Yang, P. (2017). The evolution of plant microRNAs: insights from a basal eudicot sacred lotus. Plant J 89, 442–457.PubMedCrossRefGoogle Scholar
  69. Shiu, S.H., and Bleecker, A.B. (2003). Expansion of the receptor-like kinase/ pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132, 530–543.PubMedCrossRefGoogle Scholar
  70. Shivaprasad, P.V., Chen, H.M., Patel, K., Bond, D.M., Santos, B.A.C.M., and Baulcombe, D.C. (2012). A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24, 859–874.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Shuai, P., Liang, D., Zhang, Z., Yin, W., and Xia, X. (2013). Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics 14, 233.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Singh, R., Tiwari, J.K., Rawat, S., Sharma, V., and Singh, B.P. (2016). In silico identification of candidate microRNAs and their targets in potato somatic hybrid Solanum tuberosum (+) S. pinnatisectum for late blight resistance. Plant Omics 9, 159–164.CrossRefGoogle Scholar
  73. Solomon-Blackburn, R.M., and Barker, H. (2001). A review of host majorgene resistance to potato viruses X, Y, A and V in potato: genes, genetics and mapped locations. Heredity 86, 8–16.PubMedCrossRefGoogle Scholar
  74. Song, C., Wang, C., Zhang, C., Korir, N.K., Yu, H., Ma, Z., and Fang, J. (2010). Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). BMC Genomics 11, 431.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.X., Zhu, L.H., Fauquet, C., and Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804–1806.PubMedCrossRefGoogle Scholar
  76. Subramanian, S., Fu, Y., Sunkar, R., Barbazuk, W.B., Zhu, J.K., and Yu, O. (2008). Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics 9, 160.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Szittya, G., Moxon, S., Santos, D.M., Jing, R., Fevereiro, M.P.S., Moulton, V., and Dalmay, T. (2008). High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9, 593.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Thomas, C.M., Dixon, M.S., Parniske, M., Golstein, C., and Jones, J.D.G. (1998). Genetic and molecular analysis of tomato Cf genes for resistance to Cladosporium fulvum. Philos Trans R Soc B-Biol Sci 353, 1413–1424.CrossRefGoogle Scholar
  79. Tian, D., Traw, M.B., Chen, J.Q., Kreitman, M., and Bergelson, J. (2003). Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423, 74–77.PubMedCrossRefGoogle Scholar
  80. Turina, M., Kormelink, R., and Resende, R.O. (2016). Resistance to tospoviruses in vegetable crops: epidemiological and molecular aspects. Annu Rev Phytopathol 54, 347–371.PubMedCrossRefGoogle Scholar
  81. Vleeshouwers, V.G.A.A., Raffaele, S., Vossen, J.H., Champouret, N., Oliva, R., Segretin, M.E., Rietman, H., Cano, L.M., Lokossou, A., Kessel, G., Pel, M.A., and Kamoun, S. (2011). Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol 49, 507–531.PubMedCrossRefGoogle Scholar
  82. Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669–687.PubMedCrossRefGoogle Scholar
  83. Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C., and Baker, B. (1994). The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78, 1101–1115.PubMedCrossRefGoogle Scholar
  84. Xia, R., Xu, J., Arikit, S., and Meyers, B.C. (2015). Extensive families of miRNAs and PHAS loci in norway spruce demonstrate the origins of complex phasiRNA networks in seed plants. Mol Biol Evol 32, 2905–2918.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Yang, L., Mu, X., Liu, C., Cai, J., Shi, K., Zhu, W., and Yang, Q. (2015). Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. J Integr Plant Biol 57, 1078–1088.PubMedCrossRefGoogle Scholar
  86. Yang, S., and Hua, J. (2004). A haplotype-specific resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16, 1060–1071.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Yu, X., Wang, H., Lu, Y., de Ruiter, M., Cariaso, M., Prins, M., van Tunen, A., and He, Y. (2012). Identification of conserved and novel micro- RNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63, 1025–1038.PubMedCrossRefGoogle Scholar
  88. Zhai, J., Jeong, D.H., De Paoli, E., Park, S., Rosen, B.D., Li, Y., González, A.J., Yan, Z., Kitto, S.L., Grusak, M.A., Jackson, S.A., Stacey, G., Cook, D.R., Green, P.J., Sherrier, D.J., and Meyers, B.C. (2011). microRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25, 2540–2553.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Zhai, J., Zhang, H., Arikit, S., Huang, K., Nan, G.L., Walbot, V., and Meyers, B.C. (2015). Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci USA 112, 3146–3151.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Zhai, W., Li, X., Tian, W., Zhou, Y., Pan, X., Cao, S., Zhao, X., Zhao, B., Zhang, Q., and Zhu, L. (2000). Introduction of a rice blight resistance gene, Xa21, into five Chinese rice varieties through an Agrobacteriummediated system. Sci China Ser C-Life Sci 43, 361–368.CrossRefGoogle Scholar
  91. Zhang, B., Yang, Y., Wang, J., Ling, X., Hu, Z., Liu, T., Chen, T., and Zhang, W. (2015). A CC-NBS-LRR type gene GHNTR1 confers resistance to southern root-knot nematode in Nicotiana.benthamiana and Nicotiana.tabacum. Eur J Plant Pathol 142, 715–729.CrossRefGoogle Scholar
  92. Zhang, J., and Zhou, J.M. (2010). Plant immunity triggered by microbial molecular signatures. Mol Plant 3, 783–793.PubMedCrossRefGoogle Scholar
  93. Zhang, X., Zhao, H., Gao, S., Wang, W.C., Katiyar-Agarwal, S., Huang, H. D., Raikhel, N., and Jin, H. (2011). Arabidopsis argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell 42, 356–366.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Zhang, X., Zhu, Y., Wu, H., and Guo, H. (2016a). Post-transcriptional gene silencing in plants: a double-edged sword. Sci China Life Sci 59, 271–276.PubMedCrossRefGoogle Scholar
  95. Zhang, Y., Goritschnig, S., Dong, X., and Li, X. (2003). A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1- 1, constitutive 1. Plant Cell 15, 2636–2646.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Zhang, Y., Xia, R., Kuang, H., and Meyers, B.C. (2016b). The diversification of plant NBS-LRR defense genes directs the evolution of microRNAs that target them. Mol Biol Evol 33, 2692–2705.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Zhao, J.P., Diao, S., Zhang, B.Y., Niu, B.Q., Wang, Q.L., Wan, X.C., and Luo, Y.Q. (2012). Phylogenetic analysis and molecular evolution patterns in the miR482-miR1448 polycistron of Populus L.. PLoS ONE 7, e47811.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Zhao, M., Cai, C., Zhai, J., Lin, F., Li, L., Shreve, J., Thimmapuram, J., Hughes, T.J., Meyers, B.C., and Ma, J. (2015a). Coordination of microRNAs, phasiRNAs, and NB-LRR genes in response to a plant pathogen: insights from analyses of a set of soybean Rps gene near-isogenic lines. Plant Genome 8, 0–3835.CrossRefGoogle Scholar
  99. Zhao, M., Meyers, B.C., Cai, C., Xu, W., and Ma, J. (2015b). Evolutionary patterns and coevolutionary consequences of MIRNA genes and microRNA targets triggered by multiple mechanisms of genomic duplications in soybean. Plant Cell 27, 546–562.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Zhao, Y., Huang, J., Wang, Z., Jing, S., Wang, Y., Ouyang, Y., Cai, B., Xin, X.F., Liu, X., Zhang, C., Pan, Y., Ma, R., Li, Q., Jiang, W., Zeng, Y., Shangguan, X., Wang, H., Du, B., Zhu, L., Xu, X., Feng, Y.Q., He, S.Y., Chen, R., Zhang, Q., and He, G. (2016). Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proc Natl Acad Sci USA 113, 12850–12855.PubMedCentralCrossRefGoogle Scholar
  101. Zhou, J.M., and Yang, W.C. (2016). Receptor-like kinases take center stage in plant biology. Sci China Life Sci 59, 863–866.PubMedCrossRefGoogle Scholar
  102. Zhu, Q.H., Fan, L., Liu, Y., Xu, H., Llewellyn, D., and Wilson, I. (2013). miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLoS ONE 8, e84390.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yingtian Deng
    • 1
  • Minglei Liu
    • 1
  • Xiaofei Li
    • 1
  • Feng Li
    • 1
  1. 1.Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina

Personalised recommendations