Advertisement

Science China Life Sciences

, Volume 61, Issue 3, pp 253–265 | Cite as

TRPC3 is required for the survival, pluripotency and neural differentiation of mouse embryonic stem cells (mESCs)

  • Helen Baixia Hao
  • Sarah E. Webb
  • Jianbo Yue
  • Marc Moreau
  • Catherine Leclerc
  • Andrew L. Miller
Cover Article

Abstract

Transient receptor potential canonical subfamily member 3 (TRPC3) is known to be important for neural development and the formation of neuronal networks. Here, we investigated the role of TRPC3 in undifferentiated mouse embryonic stem cells (mESCs) and during the differentiation of mESCs into neurons. CRISPR/Cas9-mediated knockout (KO) of TRPC3 induced apoptosis and the disruption of mitochondrial membrane potential both in undifferentiated mESCs and in those undergoing neural differentiation. In addition, TRPC3 KO impaired the pluripotency of mESCs. TRPC3 KO also dramatically repressed the neural differentiation of mESCs by inhibiting the expression of markers for neural progenitors, neurons, astrocytes and oligodendrocytes. Taken together, our new data demonstrate an important function of TRPC3 with regards to the survival, pluripotency and neural differentiation of mESCs.

Keywords

transient receptor potential canonical subfamily member 3 (TRPC3) mouse embryonic stem cells (mESCs) neuron differentiation CRISPR/Cas9 pluripotency apoptosis mitochondrial membrane potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Prof. Austin Smith (Cambridge Stem Cell Institute, Cambridge, UK), for kindly providing us with the 46C cells. We also thank Ms. Mandy Chan (HKUST, Hong Kong) for her technical support and Prof. Jacques Haiech (University of Strasbourg, France) for his helpful comments about the project. This work was supported by the Hong Kong Research Grants Council (RGC) General Research Fund awards (662113, 16101714, 16100115), the ANR/RGC joint research scheme award (AHKUST601/ 13), the Hong Kong Theme-based Research Scheme award (T13-706/11-1) and the Hong Kong Innovation and Technology Commission (ITCPD/17-9).

References

  1. Amaral, M.D., and Pozzo-Miller, L. (2007). TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 27, 5179–5189.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bassett, A.R., Tibbit, C., Ponting, C.P., and Liu, J.L. (2013). Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4, 220–228.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Becker, E.B.E. (2014). The Moonwalker mouse: new insights into TRPC3 function, cerebellar development, and ataxia. Cerebellum 13, 628–636.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Becker, E.B.E., Oliver, P.L., Glitsch, M.D., Banks, G.T., Achilli, F., Hardy, A., Nolan, P.M., Fisher, E.M.C., and Davies, K.E. (2009). A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc Natl Acad Sci USA 106, 6706–6711.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beddington, R.S., and Robertson, E.J. (1989). An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105, 733–737.PubMedGoogle Scholar
  6. Berridge, M.J., Bootman, M.D., and Roderick, H.L. (2003). Calcium: calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4, 517–529.CrossRefPubMedGoogle Scholar
  7. Bradley, A., Evans, M., Kaufman, M.H., and Robertson, E. (1984). Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256.CrossRefPubMedGoogle Scholar
  8. Chuang, J.H., Tung, L.C., and Lin, Y. (2015). Neural differentiation from embryonic stem cells in vitro: an overview of the signaling pathways. World J Stem Cells 7, 437–447.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dhara, S.K., and Stice, S.L. (2008). Neural differentiation of human embryonic stem cells. J Cell Biochem 105, 633–640.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dulneva, A., Lee, S., Oliver, P.L., Di Gleria, K., Kessler, B.M., Davies, K. E., and Becker, E.B.E. (2015). The mutant Moonwalker TRPC3 channel links calcium signaling to lipid metabolism in the developing cerebellum. Hum Mol Genet 24, 4114–4125.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Eder, P., Poteser, M., Romanin, C., and Groschner, K. (2005). Na+ entry and modulation of Na+/Ca2+ exchange as a key mechanism of TRPC signaling. Pflugers Arch 451, 99–104.CrossRefPubMedGoogle Scholar
  12. Engel, M., Do-Ha, D., Muñoz, S.S., and Ooi, L. (2016). Common pitfalls of stem cell differentiation: a guide to improving protocols for neurodegenerative disease models and research. Cell Mol Life Sci 73, 3693–3709.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Esdar, C., Milasta, S., Maelicke, A., and Herget, T. (2001). Differentiationassociated apoptosis of neural stem cells is effected by Bcl-2 overexpression: impact on cell lineage determination. Eur J Cell Biol 80, 539–553.CrossRefPubMedGoogle Scholar
  14. Feng, S., Li, H., Tai, Y., Huang, J., Su, Y., Abramowitz, J., Zhu, M.X., Birnbaumer, L., and Wang, Y. (2013). Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake. Proc Natl Acad Sci USA 110, 11011–11016.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fogel, B.L., Hanson, S.M., and Becker, E.B.E. (2015). Do mutations in the murine ataxia gene TRPC3 cause cerebellar ataxia in humans? Mov Disord 30, 284–286.CrossRefPubMedGoogle Scholar
  16. Fusco, F.R., Martorana, A., Giampà, C., De March, Z., Vacca, F., Tozzi, A., Longone, P., Piccirilli, S., Paolucci, S., Sancesario, G., Mercuri, N.B., Bernardi, G. (2004). Cellular localization of TRPC3 channel in rat brain: preferential distribution to oligodendrocytes. Neurosci Lett 365, 137–142.CrossRefPubMedGoogle Scholar
  17. Hanson, S.M., Sansom, M.S.P., and Becker, E.B.E. (2015). Modeling suggests TRPC3 hydrogen bonding and not phosphorylation contributes to the ataxia phenotype of the Moonwalker mouse. Biochemistry 54, 4033–4041.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hao, B., Lu, Y., Wang, Q., Guo, W., Cheung, K.H., and Yue, J. (2014). Role of STIM1 in survival and neural differentiation of mouse embryonic stem cells independent of Orai1-mediated Ca2+ entry. Stem Cell Res 12, 452–466.CrossRefPubMedGoogle Scholar
  19. Hao, B., Webb, S.E., Miller, A.L., and Yue, J. (2016). The role of Ca2+ signaling on the self-renewal and neural differentiation of embryonic stem cells (ESCs). Cell Calcium 59, 67–74.CrossRefPubMedGoogle Scholar
  20. Hartmann, J., Dragicevic, E., Adelsberger, H., Henning, H.A., Sumser, M., Abramowitz, J., Blum, R., Dietrich, A., Freichel, M., Flockerzi, V., Birnbaumer, L., Konnerth, A. (2008). TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59, 392–398.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hayashi, K., de Sousa Lopes, S.M.C., Tang, F., Lao, K., and Surani, M.A. (2008). Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401.CrossRefPubMedGoogle Scholar
  22. Hipp, J., and Atala, A. (2008). Sources of stem cells for regenerative medicine. Stem Cell Rev 4, 3–11.CrossRefPubMedGoogle Scholar
  23. Jia, Y., Zhou, J., Tai, Y., and Wang, Y. (2007). TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10, 559–567.CrossRefPubMedGoogle Scholar
  24. Kwan, H.Y., Huang, Y., and Yao, X. (2006). Protein kinase C can inhibit TRPC3 channels indirectly via stimulating protein kinase G. J Cell Physiol 207, 315–321.CrossRefPubMedGoogle Scholar
  25. Leclerc, C., Néant, I., and Moreau, M. (2012). The calcium: an early signal that initiates the formation of the nervous system during embryogenesis. Front Mol Neurosci 5, 64.CrossRefGoogle Scholar
  26. Li, Y., Jia, Y.C., Cui, K., Li, N., Zheng, Z.Y., Wang, Y.Z., and Yuan, X.B. (2005). Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434, 894–898.CrossRefPubMedGoogle Scholar
  27. Liang, J., Wang, Y.J., Tang, Y., Cao, N., Wang, J., and Yang, H.T. (2010). Type 3 inositol 1,4,5-trisphosphate receptor negatively regulates apoptosis during mouse embryonic stem cell differentiation. Cell Death Differ 17, 1141–1154.CrossRefPubMedGoogle Scholar
  28. Lichtenegger, M., and Groschner, K. (2014). TRPC3: a multifunctional signaling molecule. In: Mammalian Transient Receptor Potential (TRP) Cation Channels, B. Nilius, and V. Flockerzi, eds. (Berlin Heidelberg: Springer), pp. 67–84.CrossRefGoogle Scholar
  29. Lin, H.H., Bell, E., Uwanogho, D., Perfect, L.W., Noristani, H., Bates, T.J. D., Snetkov, V., Price, J., and Sun, Y.M. (2010). Neuronatin promotes neural lineage in ESCs via Ca2+ signaling. Stem Cells 28, 1950–1960.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Liu, S.P., Fu, R.H., Huang, S.J., Huang, Y.C., Chen, S.Y., Chang, C.H., Liu, C.H., Tsai, C.H., Shyu, W.C., Lin, S.Z. (2013). Stem cell applications in regenerative medicine for neurological disorders. Cell Transplant 22, 631–637.CrossRefPubMedGoogle Scholar
  31. Louhivuori, L.M., Jansson, L., Turunen, P.M., Jäntti, M.H., Nordström, T., Louhivuori, V., and Åkerman, K.E. (2015). Transient receptor potential channels and their role in modulating radial glial-neuronal interaction: a signaling pathway involving mGluR5. Stem Cells Dev 24, 701–713.CrossRefPubMedGoogle Scholar
  32. McNeish, J. (2004). Embryonic stem cells in drug discovery. Nat Rev Drug Discov 3, 70–80.CrossRefPubMedGoogle Scholar
  33. Minke, B., and Parnas, M. (2006). Insights on TRP channels from in vivo studies in Drosophila. Annu Rev Physiol 68, 649–684.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nagasaka, R., Matsumoto, M., Okada, M., Sasaki, H., Kanie, K., Kii, H., Uozumi, T., Kiyota, Y., Honda, H., and Kato, R. (2017). Visualization of morphological categories of colonies for monitoring of effect on induced pluripotent stem cell culture status. Reg Ther 6, 41–51.Google Scholar
  35. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Schöler, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.CrossRefPubMedGoogle Scholar
  36. Orrenius, S., Gogvadze, V., and Zhivotovsky, B. (2015). Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun 460, 72–81.CrossRefPubMedGoogle Scholar
  37. Perry, S.W., Norman, J.P., Barbieri, J., Brown, E.B., and Gelbard, H.A. (2011). Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotech 50, 98–115.CrossRefGoogle Scholar
  38. Pinton, P., Giorgi, C., Siviero, R., Zecchini, E., and Rizzuto, R. (2008). Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27, 6407–6418.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 2281–2308.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Riccardi, C., and Nicoletti, I. (2006). Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1, 1458–1461.CrossRefPubMedGoogle Scholar
  41. Sanjana, N.E., Shalem, O., and Zhang, F. (2014). Improved vectors and genome-wide libraries for CRISPR screening. Nat Meth 11, 783–784.CrossRefGoogle Scholar
  42. Soboloff, J., Spassova, M., Hewavitharana, T., He, L.P., Luncsford, P., Xu, W., Venkatachalam, K., van Rossum, D., Patterson, R.L., and Gill, D.L. (2007). TRPC channels: integrators of multiple cellular signals. Handb Exp Pharmacol (179), 575–591.CrossRefGoogle Scholar
  43. Štefková, K., Procházková, J., and Pacherník, J. (2015). Alkaline phosphatase in stem cells. Stem Cells Int 2015, 1–11.CrossRefGoogle Scholar
  44. Svobodova, B., and Groschner, K. (2016). Mechanisms of lipid regulation and lipid gating in TRPC channels. Cell Calcium 59, 271–279.CrossRefPubMedGoogle Scholar
  45. Tonelli, F.M.P., Santos, A.K., Gomes, D.A., da Silva, S.L., Gomes, K.N., Ladeira, L.O., and Resende, R.R. (2012). Stem cells and calcium signaling. Adv Exp Med Biol 740, 891–916.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Trebak, M., Vazquez, G., Bird, G.S.J., and Putney Jr., J.W. (2003). The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33, 451–461.CrossRefPubMedGoogle Scholar
  47. Vazquez, G., Wedel, B.J., Trebak, M., St. John Bird, G., and Putney Jr., J. W. (2003). Expression level of the canonical transient receptor potential 3 (TRPC3) channel determines its mechanism of activation. J Biol Chem 278, 21649–21654.CrossRefPubMedGoogle Scholar
  48. Wei, W., Lu, Y., Hao, B., Zhang, K., Wang, Q., Miller, A.L., Zhang, L.R., Zhang, L.H., and Yue, J. (2015). CD38 is required for neural differentiation of mouse embryonic stem cells by modulating reactive oxygen species. Stem Cells 33, 2664–2673.CrossRefPubMedGoogle Scholar
  49. Weick, J.P., Johnson, M.A., and Zhang, S. (2009). Developmental regulation of human embryonic stem cell-derived neurons by calcium entry via transient receptor potential (TRP) channels. Stem Cells 27, 2906–2916.PubMedPubMedCentralGoogle Scholar
  50. Xu, X., Duan, S., Yi, F., Ocampo, A., Liu, G.H., and Izpisua Belmonte, J.C. (2013). Mitochondrial regulation in pluripotent stem cells. Cell Metab 18, 325–332.CrossRefPubMedGoogle Scholar
  51. Yeo, W., and Gautier, J. (2004). Early neural cell death: dying to become neurons. Dev Biol 274, 233–244.CrossRefPubMedGoogle Scholar
  52. Ying, Q.L., and Smith, A.G. (2003). Defined conditions for neural commitment and differentiation. Meth Enzymol 365, 327–341.CrossRefPubMedGoogle Scholar
  53. Ying, Q.L., Stavridis, M., Griffiths, D., Li, M., and Smith, A. (2003). Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21, 183–186.CrossRefPubMedGoogle Scholar
  54. Yu, H.M., Wen, J., Wang, R., Shen, W.H., Duan, S., and Yang, H.T. (2008). Critical role of type 2 ryanodine receptor in mediating activity-dependent neurogenesis from embryonic stem cells. Cell Calcium 43, 417–431.CrossRefPubMedGoogle Scholar
  55. Zhang, Z.H., Lu, Y.Y., and Yue, J. (2013). Two pore channel 2 differentially modulates neural differentiation of mouse embryonic stem cells. PLoS ONE 8, e66077.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Helen Baixia Hao
    • 1
  • Sarah E. Webb
    • 1
  • Jianbo Yue
    • 2
  • Marc Moreau
    • 3
  • Catherine Leclerc
    • 3
  • Andrew L. Miller
    • 1
  1. 1.Division of Life Science and State Key Laboratory of Molecular NeuroscienceHKUST, Clear Water BayHong KongChina
  2. 2.Department of Biomedical SciencesCity University of Hong KongHong KongChina
  3. 3.Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI)Université de Toulouse, CNRS, UPSToulouseFrance

Personalised recommendations