Advertisement

Science China Life Sciences

, Volume 61, Issue 2, pp 178–189 | Cite as

An expression atlas of miRNAs in Arabidopsis thaliana

Research Paper

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. MiRNA expression often exhibits spatial and temporal specificity. However, genome-wide miRNA expression patterns in different organs during development of Arabidopsis thaliana have not yet been systemically investigated. In this study, we sequenced small RNA libraries generated from 27 different organ/tissue types, which cover the entire life cycle of Arabidopsis. Analysis of the sequencing data revealed that most miRNAs are ubiquitously expressed, whereas a small set of miRNAs display highly specific expression patterns. In addition, different miRNA members within the same family have distinct spatial and temporal expression patterns. Moreover, we found that some miRNAs are produced from different arms of their hairpin precursors at different developmental stages. This work provides new insights into the regulation of miRNA biogenesis and a rich resource for future investigation of miRNA functions in Arabidopsis.

Keywords

miRNA plant development high-throughput sequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by grants fromNational Key Research and Development Program of China (2016YFA0500800) and National Natural Science Foundation of China (31421001, 31225015) to Yijun Qi. Yijun Qi is a visiting investigator of the CAS Center for Excellence in Molecular Plant Sciences.

Supplementary material

11427_2017_9199_MOESM1_ESM.pdf (921 kb)
Figure S1 Correlation between two biological replicates of small RNA sequencing.
11427_2017_9199_MOESM2_ESM.pdf (691 kb)
Figure S2 Small RNA size distribution and 5′ bias.
11427_2017_9199_MOESM3_ESM.pdf (2.6 mb)
Figure S3 S-plots for miRNAs.
11427_2017_9199_MOESM4_ESM.pdf (485 kb)
Figure S4 Expression pattern and strand bias of conserved versus non-conserved miRNAs.
11427_2017_9199_MOESM5_ESM.pdf (452 kb)
Figure S5 Expression of representative miRNAs at vegetative stages.
11427_2017_9199_MOESM6_ESM.pdf (4 mb)
Figure S6 Analysis of miRNA arm switch events.
11427_2017_9199_MOESM7_ESM.pdf (266 kb)
Table S1 Summary of small RNA libraries used in this study
11427_2017_9199_MOESM8_ESM.pdf (743 kb)
Table S2 Expression levels of miRNAs in all samples
11427_2017_9199_MOESM9_ESM.pdf (310 kb)
Table S3 Expression levels of members of highly conserved miRNA families during development
11427_2017_9199_MOESM10_ESM.pdf (114 kb)
Table S4 The sequences of probes used in small RNA Northern blot

References

  1. Allen, R.S., Li, J., Stahle, M.I., Dubroué, A., Gubler, F., and Millar, A.A. (2007). Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104, 16371–16376.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alvarez-Buylla, E.R., Benítez, M., Corvera-Poiré, A., Chaos Cador, A., de Folter, S., Gamboa de Buen, A., Garay-Arroyo, A., García-Ponce, B., Jaimes-Miranda, F., Pérez-Ruiz, R.V., Piñeyro-Nelson, A., and Sánchez-Corrales, Y.E. (2010). Flower development. Arabidopsis Book 8, e0127.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arikit, S., Xia, R., Kakrana, A., Huang, K., Zhai, J., Yan, Z., Valdés-López, O., Prince, S., Musket, T.A., Nguyen, H.T., Stacey, G., and Meyers, B.C. (2014). An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. Plant Cell 26, 4584–4601.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aukerman, M.J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730–2741.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Axtell, M.J. (2008). Evolution of microRNAs and their targets: are all microRNAs biologically relevant? Biochim Biophys Acta 1779, 725–734.CrossRefPubMedGoogle Scholar
  6. Axtell, M.J. (2013). Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64, 137–159.CrossRefPubMedGoogle Scholar
  7. Axtell, M.J., and Bowman, J.L. (2008). Evolution of plant microRNAs and their targets. Trends Plant Sci 13, 343–349.CrossRefPubMedGoogle Scholar
  8. Baumberger, N., and Baulcombe, D.C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102, 11928–11933.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bologna, N.G., and Voinnet, O. (2014). The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65, 473–503.CrossRefPubMedGoogle Scholar
  10. Bonnet, E., Van de Peer, Y., and Rouzé, P. (2006). The small RNA world of plants. New Phytol 171, 451–468.CrossRefPubMedGoogle Scholar
  11. Breakfield, N.W., Corcoran, D.L., Petricka, J.J., Shen, J., Sae-Seaw, J., Rubio-Somoza, I., Weigel, D., Ohler, U., and Benfey, P.N. (2012). High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Res 22, 163–176.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y.Y., Sieburth, L., and Voinnet, O. (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185–1190.CrossRefPubMedGoogle Scholar
  13. Chen, H.M., Chen, L.T., Patel, K., Li, Y.H., Baulcombe, D.C., and Wu, S.H. (2010). 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107, 15269–15274.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen, T., Cui, P., and Xiong, L. (2015). The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis. Nucleic Acids Res 43, 8283–8298.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen, X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025.CrossRefPubMedGoogle Scholar
  16. Chen, X. (2009). Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25, 21–44.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chiang, H.R., Schoenfeld, L.W., Ruby, J.G., Auyeung, V.C., Spies, N., Baek, D., Johnston, W.K., Russ, C., Luo, S., Babiarz, J.E., Blelloch, R., Schroth, G.P., Nusbaum, C., and Bartel, D.P. (2010). Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 24, 992–1009.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chiou, T.J., Aung, K., Lin, S.I., Wu, C.C., Chiang, S.F., and Su, C.L. (2006). Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18, 412–421.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cuperus, J.T., Fahlgren, N., and Carrington, J.C. (2011). Evolution and functional diversification of MIRNA genes. Plant Cell 23, 431–442.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cuperus, J.T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R.T., Takeda, A., Sullivan, C.M., Gilbert, S.D., Montgomery, T.A., and Carrington, J.C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17, 997–1003.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Czech, B., and Hannon, G.J. (2011). Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12, 19–31.CrossRefPubMedGoogle Scholar
  22. Devers, E.A., Branscheid, A., May, P., and Krajinski, F. (2011). Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol 156, 1990–2010.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dong, Z., Han, M.H., and Fedoroff, N. (2008). The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA 105, 9970–9975.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95, 14863–14868.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Emery, J.F., Floyd, S.K., Alvarez, J., Eshed, Y., Hawker, N.P., Izhaki, A., Baum, S.F., and Bowman, J.L. (2003). Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13, 1768–1774.CrossRefPubMedGoogle Scholar
  26. Fahlgren, N., Howell, M.D., Kasschau, K.D., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., Law, T.F., Grant, S.R., Dangl, J.L., and Carrington, J.C. (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of miRNA genes. PLoS ONE 2, e219.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fang, X., Cui, Y., Li, Y., and Qi, Y. (2015). Transcription and processing of primary microRNAs are coupled by elongator complex in Arabidopsis. Nat Plants 1, 15075.CrossRefPubMedGoogle Scholar
  28. Gandikota, M., Birkenbihl, R.P., Höhmann, S., Cardon, G.H., Saedler, H., and Huijser, P. (2007). The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49, 683–693.CrossRefPubMedGoogle Scholar
  29. Ghildiyal, M., Xu, J., Seitz, H., Weng, Z., and Zamore, P.D. (2010). Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16, 43–56.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Griffiths-Jones, S., Hui, J.H.L., Marco, A., and Ronshaugen, M. (2011). microRNA evolution by arm switching. EMBO Rep 12, 172–177.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gurjar, A.K.S., Panwar, A.S., Gupta, R., and Mantri, S.S. (2016). pmiRExAt: plant miRNA expression atlas database and web applications. Database 2016, baw060.Google Scholar
  32. Hu, W., Wang, T., Yue, E., Zheng, S., and Xu, J.H. (2014). Flexible microRNA arm selection in rice. Biochem Biophys Res Commun 447, 526–530.CrossRefPubMedGoogle Scholar
  33. Iki, T., Yoshikawa, M., Nishikiori, M., Jaudal, M.C., Matsumoto-Yokoyama, E., Mitsuhara, I., Meshi, T., and Ishikawa, M. (2010). In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell 39, 282–291.CrossRefPubMedGoogle Scholar
  34. Iwasaki, S., Kobayashi, M., Yoda, M., Sakaguchi, Y., Katsuma, S., Suzuki, T., and Tomari, Y. (2010). Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 39, 292–299.CrossRefPubMedGoogle Scholar
  35. Jagadeeswaran, G., Zheng, Y., Sumathipala, N., Jiang, H., Arrese, E.L., Soulages, J.L., Zhang, W., and Sunkar, R. (2010). Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics 11, 52.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jeong, D.H., Park, S., Zhai, J., Gurazada, S.G.R., De Paoli, E., Meyers, B.C., and Green, P.J. (2011). Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell 23, 4185–4207.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B. (2006). microRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57, 19–53.CrossRefPubMedGoogle Scholar
  38. Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A., and Timmermans, M.C.P. (2004). microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84–88.CrossRefPubMedGoogle Scholar
  39. Kasschau, K.D., Fahlgren, N., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., and Carrington, J.C. (2007). Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5, e57.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kidner, C.A., and Martienssen, R.A. (2004). Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428, 81–84.CrossRefPubMedGoogle Scholar
  41. Kuchenbauer, F., Mah, S.M., Heuser, M., McPherson, A., Rüschmann, J., Rouhi, A., Berg, T., Bullinger, L., Argiropoulos, B., Morin, R.D., Lai, D., Starczynowski, D.T., Karsan, A., Eaves, C.J., Watahiki, A., Wang, Y., Aparicio, S.A., Ganser, A., Krauter, J., Döhner, H., Döhner, K., Marra, M.A., Camargo, F.D., Palmqvist, L., Buske, C., and Humphries, R.K. (2011). Comprehensive analysis of mammalian miRNA* species and their role in myeloid cells. Blood 118, 3350–3358.CrossRefPubMedGoogle Scholar
  42. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lauressergues, D., Couzigou, J.M., Clemente, H.S., Martinez, Y., Dunand, C., Bécard, G., and Combier, J.P. (2015). Primary transcripts of microRNAs encode regulatory peptides. Nature 520, 90–93.CrossRefPubMedGoogle Scholar
  44. Li, J., Yang, Z., Yu, B., Liu, J., and Chen, X. (2005). Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15, 1501–1507.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Li, S., Liu, L., Zhuang, X., Yu, Y., Liu, X., Cui, X., Ji, L., Pan, Z., Cao, X., Mo, B., Zhang, F., Raikhel, N., Jiang, L., and Chen, X. (2013). microRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153, 562–574.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Li, S.C., Liao, Y.L., Ho, M.R., Tsai, K.W., Lai, C.H., and Lin, W. (2012a). miRNA arm selection and isomiR distribution in gastric cancer. BMC Genomics 13, S13.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li, S.C., Tsai, K.W., Pan, H.W., Jeng, Y.M., Ho, M.R., and Li, W.H. (2012b). microRNA 3′ end nucleotide modification patterns and arm selection preference in liver tissues. BMC Syst Biol 6, S14.CrossRefGoogle Scholar
  48. Li, W.X., Oono, Y., Zhu, J., He, X.J., Wu, J.M., Iida, K., Lu, X.Y., Cui, X., Jin, H., and Zhu, J.K. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20, 2238–2251.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Llave, C., Xie, Z., Kasschau, K.D., and Carrington, J.C. (2002). Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056.CrossRefPubMedGoogle Scholar
  50. Mallory, A.C., Bartel, D.P., and Bartel, B. (2005). microRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17, 1360–1375.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Manavella, P.A., Hagmann, J., Ott, F., Laubinger, S., Franz, M., Macek, B., and Weigel, D. (2012). Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151, 859–870.CrossRefPubMedGoogle Scholar
  52. Marco, A., Macpherson, J.I., Ronshaugen, M., and Griffiths-Jones, S. (2012). microRNAs from the same precursor have different targeting properties. Silence 3, 8.CrossRefPubMedPubMedCentralGoogle Scholar
  53. McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J., and Barton, M.K. (2001). Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713.CrossRefPubMedGoogle Scholar
  54. Meyers, B.C., Axtell, M.J., Bartel, B., Bartel, D.P., Baulcombe, D., Bowman, J.L., Cao, X., Carrington, J.C., Chen, X., Green, P.J., Griffiths-Jones, S., Jacobsen, S.E., Mallory, A.C., Martienssen, R.A., Poethig, R.S., Qi, Y., Vaucheret, H., Voinnet, O., Watanabe, Y., Weigel, D., and Zhu, J.K. (2008). Criteria for annotation of plant microRNAs. Plant Cell 20, 3186–3190.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G.J., and Qi, Y. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Montgomery, T.A., Howell, M.D., Cuperus, J.T., Li, D., Hansen, J.E., Alexander, A.L., Chapman, E.J., Fahlgren, N., Allen, E., and Carrington, J.C. (2008). Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133, 128–141.CrossRefPubMedGoogle Scholar
  57. Nag, A., King, S., and Jack, T. (2009). miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA 106, 22534–22539.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nozawa, M., Miura, S., and Nei, M. (2012). Origins and evolution of microRNA genes in plant species. Genome Biol Evol 4, 230–239.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Okamura, K., Liu, N., and Lai, E.C. (2009). Distinct mechanisms for microRNA strand selection by Drosophila argonautes. Mol Cell 36, 431–444.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Okamura, K., Phillips, M.D., Tyler, D.M., Duan, H., Chou, Y., and Lai, E.C. (2008). The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 15, 354–363.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Palatnik, J.F., Wollmann, H., Schommer, C., Schwab, R., Boisbouvier, J., Rodriguez, R., Warthmann, N., Allen, E., Dezulian, T., Huson, D., Carrington, J.C., and Weigel, D. (2007). Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 13, 115–125.CrossRefPubMedGoogle Scholar
  62. Park, M.Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H., and Poethig, R.S. (2005). Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102, 3691–3696.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Park, W., Li, J., Song, R., Messing, J., and Chen, X. (2002). CARPEL FACTORY, a Dicer Homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12, 1484–1495.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Qi, Y., Denli, A.M., and Hannon, G.J. (2005). Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19, 421–428.CrossRefPubMedGoogle Scholar
  65. Rajagopalan, R., Vaucheret, H., Trejo, J., and Bartel, D.P. (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20, 3407–3425.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ren, G., Xie, M., Dou, Y., Zhang, S., Zhang, C., and Yu, B. (2012). Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci USA 109, 12817–12821.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002). Prediction of plant microRNA targets. Cell 110, 513–520.CrossRefPubMedGoogle Scholar
  68. Ro, S., Park, C., Young, D., Sanders, K.M., and Yan, W. (2007). Tissue-dependent paired expression of miRNAs. Nucleic Acids Res 35, 5944–5953.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Rogers, K., and Chen, X. (2013). Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25, 2383–2399.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Schmid, M., Davison, T.S., Henz, S.R., Pape, U.J., Demar, M., Vingron, M., Schölkopf, B., Weigel, D., and Lohmann, J.U. (2005). A gene expression map of Arabidopsis thaliana development. Nat Genet 37, 501–506.CrossRefPubMedGoogle Scholar
  71. Sieber, P., Wellmer, F., Gheyselinck, J., Riechmann, J.L., and Meyerowitz, E.M. (2007). Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134, 1051–1060.CrossRefPubMedGoogle Scholar
  72. Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., and Watanabe, Y. (2008). The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49, 493–500.CrossRefPubMedGoogle Scholar
  73. Tang, G., Reinhart, B.J., Bartel, D.P., and Zamore, P.D. (2003). A biochemical framework for RNA silencing in plants. Genes Dev 17, 49–63.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Todesco, M., Rubio-Somoza, I., Paz-Ares, J., and Weigel, D. (2010). A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6, e1001031.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tomari, Y., Matranga, C., Haley, B., Martinez, N., and Zamore, P.D. (2004). A protein sensor for siRNA asymmetry. Science 306, 1377–1380.CrossRefPubMedGoogle Scholar
  76. Vaucheret, H., Vazquez, F., Crété, P., and Bartel, D.P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18, 1187–1197.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wang, J.W., Czech, B., and Weigel, D. (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738–749.CrossRefPubMedGoogle Scholar
  78. Wang, L., and Wang, J.W. (2015). Coding function for non-coding RNA in plants—insights from miRNA encoded peptide (miPEP). Sci China Life Sci 58, 503–505.CrossRefPubMedGoogle Scholar
  79. Wu, G., and Poethig, R.S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539–3547.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wu, G., Park, M.Y., Conway, S.R., Wang, J.W., Weigel, D., and Poethig, R.S. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750–759.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wu, X., Shi, Y., Li, J., Xu, L., Fang, Y., Li, X., and Qi, Y. (2013). A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell Res 23, 645–657.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Xie, Z., Allen, E., Fahlgren, N., Calamar, A., Givan, S.A., and Carrington, J.C. (2005). Expression of Arabidopsis miRNA genes. Plant Physiol 138, 2145–2154.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R., and Chen, X. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yu, B., Bi, L., Zheng, B., Ji, L., Chevalier, D., Agarwal, M., Ramachandran, V., Li, W., Lagrange, T., Walker, J.C., and Chen, X. (2008). The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci USA 105, 10073–10078.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zhang, S., Liu, Y., and Yu, B. (2014). PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLoS Genet 10, e1004841.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zhang, T.Q., Wang, J.W., and Zhou, C.M. (2015). The role of miR156 in developmental transitions in Nicotiana tabacum. Sci China Life Sci 58, 253–260.CrossRefPubMedGoogle Scholar
  87. Zhang, W., Gao, S., Zhou, X., Xia, J., Chellappan, P., Zhou, X., Zhang, X., and Jin, H. (2010a). Multiple distinct small RNAs originate from the same microRNA precursors. Genome Biol 11, R81.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhang, X., Zhao, H., Gao, S., Wang, W.C., Katiyar-Agarwal, S., Huang, H.D., Raikhel, N., and Jin, H. (2011). Arabidopsis argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell 42, 356–366.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhang, Z., Yu, J., Li, D., Zhang, Z., Liu, F., Zhou, X., Wang, T., Ling, Y., and Su, Z. (2010b). PMRD: plant microRNA database. Nucleic Acids Res 38, D806–D813.CrossRefPubMedGoogle Scholar
  90. Zielezinski, A., Dolata, J., Alaba, S., Kruszka, K., Pacak, A., Swida-Barteczka, A., Knop, K., Stepien, A., Bielewicz, D., Pietrykowska, H., Sierocka, I., Sobkowiak, L., Lakomiak, A., Jarmolowski, A., Szweykowska-Kulinska, Z., and Karlowski, W.M. (2015). mirEX 2.0—an integrated environment for expression profiling of plant microRNAs. BMC Plant Biol 15, 144.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
  2. 2.Tsinghua-Peking Center for Life SciencesBeijingChina
  3. 3.College of Biological SciencesChina Agricultural UniversityBeijingChina
  4. 4.College of Life Sciences-Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental ImprovementCapital Normal UniversityBeijingChina

Personalised recommendations