Science China Life Sciences

, Volume 61, Issue 2, pp 204–213 | Cite as

A lariat-derived circular RNA is required for plant development in Arabidopsis

  • Jinping Cheng
  • Yong Zhang
  • Ziwei Li
  • Taiyun Wang
  • Xiaotuo Zhang
  • Binglian Zheng
Research Paper


Lariat RNA is produced during pre-mRNA splicing, and it is traditionally thought as by-products, due to the quick turnover by debranching followed by degradation. However, recent findings identified many lariat RNAs accumulate with a circular form in higher eukaryotes. Although the remarkable accumulation, biological consequence of lariat-derived circular RNAs (here we name laciRNAs) remains largely unknown. Here, we report that a specific laciRNA from At5g37720 plays an essential role in plant development by regulating gene expression globally. We focus on 17 laciRNAs with accumulation in wild type plants by circular RNA sequencing in Arabidopsis. To determine biological functions of these laciRNAs, we constructed one pair of transgenic plants for each laciRNA, in which the local gene with or without introns was over-expressed in wild type plants, respectively. By comparing morphological phenotypes and transcriptomic profiles between two classes of transgenic plants, we show that over-expression of the laciRNA derived from the 1st intron of At5g37720 causes pleiotropic phenotypes, including curly and clustered leaf, late flowering, reduced fertility, and accompanied with altered expression of approximately 800 genes. Our results provide another example that a specific plant circular RNA regulates gene expression in a similar manner to that of other non-coding RNAs under physiological conditions.


lariat RNA circular RNA intron flowering time pleiotropic phenotype 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (31422029, 31470281, 31671261) and the Recruitment Program of Global Experts (China).

Supplementary material

11427_2017_9182_MOESM1_ESM.xls (171 kb)
Table S1 List of de-regulated genes in laciRNA-OE plants
11427_2017_9182_MOESM2_ESM.xls (74 kb)
Table S2 List of GO analysis of de-regulated genes in laciRNA-OE plants
11427_2017_9182_MOESM3_ESM.xls (24 kb)
Table S3 Primers used in this study


  1. Armakola, M., Higgins, M.J., Figley, M.D., Barmada, S.J., Scarborough, E.A., Diaz, Z., Fang, X., Shorter, J., Krogan, N.J., Finkbeiner, S., Farese, R.V., and Gitler, A.D. (2012). Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet 44, 1302–1309.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ashwal-Fluss, R., Meyer, M., Pamudurti, N.R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., and Kadener, S. (2014). circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56, 55–66.CrossRefPubMedGoogle Scholar
  3. Conn, V.M., Hugouvieux, V., Nayak, A., Conos, S.A., Capovilla, G., Cildir, G., Jourdain, A., Tergaonkar, V., Schmid, M., Zubieta, C., and Conn, S.J. (2017). A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 3, 17053.CrossRefPubMedGoogle Scholar
  4. Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., and Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388.CrossRefPubMedGoogle Scholar
  5. Jeck, W.R., and Sharpless, N.E. (2014). Detecting and characterizing circular RNAs. Nat Biotechnol 32, 453–461.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Karst, S.M., Rütz, M.L., and Menees, T.M. (2000). The yeast retrotransposons Ty1 and Ty3 require the RNA lariat debranching enzyme, Dbr1p, for efficient accumulation of reverse transcripts. Biochem Biophys Res Commun 268, 112–117.CrossRefPubMedGoogle Scholar
  7. Kim, H.C., Kim, G.M., Yang, J.M., and Ki, J.W. (2001). Cloning, expression, and complementation test of the RNA lariat debranching enzyme cDNA from mouse. Mol Cells 11, 198–203.PubMedGoogle Scholar
  8. Kim, J.W., Kim, H.C., Kim, G.M., Yang, J.M., Boeke, J.D., and Nam, K. (2000). Human RNA lariat debranching enzyme cDNA complements the phenotypes of Saccharomyces cerevisiae dbr1 and Schizosaccharomyces pombe dbr1 mutants. Nucleic Acids Res 28, 3666–3673.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., Zhong, G., Yu, B., Hu, W., Dai, L., Zhu, P., Chang, Z., Wu, Q., Zhao, Y., Jia, Y., Xu, P., Liu, H., and Shan, G. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22, 256–264.CrossRefPubMedGoogle Scholar
  10. Li, Z., Wang, S., Cheng, J., Su, C., Zhong, S., Liu, Q., Fang, Y., Yu, Y., Lv, H., Zheng, Y., and Zheng, B. (2016). Intron lariat RNA inhibits microRNA biogenesis by sequestering the Dicing complex in Arabidopsis. PLoS Genet 12, e1006422.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Lu, T., Cui, L., Zhou, Y., Zhu, C., Fan, D., Gong, H., Zhao, Q., Zhou, C., Zhao, Y., Lu, D., Luo, J., Wang, Y., Tian, Q., Feng, Q., Huang, T., and Han, B. (2015). Transcriptome-wide investigation of circular RNAs in rice. RNA 21, 2076–2087.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S.D., Gregersen, L.H., Munschauer, M., Loewer, A., Ziebold, U., Landthaler, M., Kocks, C., le Noble, F., and Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338.CrossRefPubMedGoogle Scholar
  13. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Piwecka, M., Glažar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S.A., Rybak-Wolf, A., Filipchyk, A., Klironomos, F., Cerda Jara, C.A., Fenske, P., Trimbuch, T., Zywitza, V., Plass, M., Schreyer, L., Ayoub, S., Kocks, C., Kühn, R., Rosenmund, C., Birchmeier, C., and Rajewsky, N. (2017). Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526.CrossRefGoogle Scholar
  15. Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.CrossRefPubMedGoogle Scholar
  16. Ruskin, B., Krainer, A.R., Maniatis, T., and Green, M.R. (1984). Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38, 317–331.CrossRefPubMedGoogle Scholar
  17. Suzuki, H., Zuo, Y., Wang, J., Zhang, M.Q., Malhotra, A., and Mayeda, A. (2006). Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34, e63.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562–578.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Wang, H., Hill, K., and Perry, S.E. (2004). An Arabidopsis RNA lariat debranching enzyme is essential for embryogenesis. J Biol Chem 279, 1468–1473.CrossRefPubMedGoogle Scholar
  20. Wang, P.L., Bao, Y., Yee, M.C., Barrett, S.P., Hogan, G.J., Olsen, M.N., Dinneny, J.R., Brown, P.O., and Salzman, J. (2014). Circular RNA is expressed across the eukaryotic tree of life. PLoS ONE 9, e90859.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ye, C.Y., Chen, L., Liu, C., Zhu, Q.H., and Fan, L. (2015). Widespread noncoding circular RNAs in plants. New Phytol 208, 88–95.CrossRefPubMedGoogle Scholar
  22. Zhang, Y., Zhang, X.O., Chen, T., Xiang, J.F., Yin, Q.F., Xing, Y.H., Zhu, S., Yang, L., and Chen, L.L. (2013). Circular intronic long noncoding RNAs. Mol Cell 51, 792–806.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jinping Cheng
    • 1
  • Yong Zhang
    • 1
  • Ziwei Li
    • 1
  • Taiyun Wang
    • 1
  • Xiaotuo Zhang
    • 1
  • Binglian Zheng
    • 1
  1. 1.State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life SciencesFudan UniversityShanghaiChina

Personalised recommendations