Science China Life Sciences

, Volume 61, Issue 2, pp 190–198 | Cite as

Conservation analysis of long non-coding RNAs in plants

  • Pingchuan Deng
  • Shu Liu
  • Xiaojun Nie
  • Song Weining
  • Liang Wu
Research Paper


Long non-coding RNAs (lncRNAs) are gene regulators that have vital roles in development and adaptation to the environment in eukaryotes. However, the structural and evolutionary analyses of plant lncRNAs are limited. In this study, we performed an analysis of lncRNAs in five monocot and five dicot species. Our results showed that plant lncRNA genes were generally shorter and had fewer exons than protein-coding genes. The numbers of lncRNAs were positively correlated with the numbers of protein-coding genes in different plant species, despite a high range of variation. Sequence conservation analysis showed that the majority of lncRNAs had high sequence conservation at the intra-species and sub-species levels, reminiscent of protein-coding genes. At the inter-species level, a subset of lncRNAs were highly diverged at the nucleotide level, but conserved by position. Interestingly, we found that plant lncRNAs have identical splicing signals, and those which can form precursors or targets of miRNAs have a conservative identity in different species. We also revealed that most of the lowly expressed lncRNAs were tissue-specific, while those highly conserved were constitutively transcribed. Meanwhile, we characterized a subset of rice lncRNAs that were co-expressed with their adjacent protein-coding genes, suggesting they may play cis-regulatory roles. These results will contribute to understanding the biological significance and evolution of lncRNAs in plants.


lncRNA conservation monocots dicots rice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by Zhejiang Provincial Natural Science Foundation of China (LR16C060001), the National Key Program on Transgenic Research and the Fundamental Research Funds for the Central Universities (2016QNA6014).

Supplementary material

11427_2017_9174_MOESM1_ESM.jpg (96 kb)
Figure S1 Distribution of distance from lncRNAs to the nearest gene.
11427_2017_9174_MOESM2_ESM.jpg (116 kb)
Figure S2 Conservation of acceptor and donor splicing signals in plants.
11427_2017_9174_MOESM3_ESM.xlsx (22 kb)
Table S1 The detail information of lncRNA pairs showed orthologous relationship
11427_2017_9174_MOESM4_ESM.xlsx (32 kb)
Table S2 List of lncRNA pairs showed positional conservation
11427_2017_9174_MOESM5_ESM.xls (23 kb)
Table S3 Detailed list of lncRNAs correlated with the expression of adjacent protein-coding genes in rice
11427_2017_9174_MOESM6_ESM.xls (20 kb)
Table S4 List of high-abundance lncRNAs co-expressed with protein-coding genes in rice


  1. Chernikova, D., Managadze, D., Glazko, G.V., Makalowski, W., and Rogozin, I.B. (2016). Conservation of the exon-intron structure of long intergenic non-coding RNA genes in eutherian mammals. Life 6, 27.CrossRefPubMedCentralGoogle Scholar
  2. Cui, X., Lv, Y., Chen, M., Nikoloski, Z., Twell, D., and Zhang, D. (2015). Young genes out of the male: an insight from evolutionary age analysis of the pollen transcriptome. Mol Plant 8, 935–945.CrossRefPubMedGoogle Scholar
  3. Dai, X., and Zhao, P.X. (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39, W155–W159.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., Knowles, D.G., Lagarde, J., Veeravalli, L., Ruan, X., Ruan, Y., Lassmann, T., Carninci, P., Brown, J.B., Lipovich, L., Gonzalez, J.M., Thomas, M., Davis, C.A., Shiekhattar, R., Gingeras, T.R., Hubbard, T.J., Notredame, C., Harrow, J., and Guigó, R. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22, 1775–1789.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Kent, W.J. (2002). BLAT—The BLAST-like alignment tool. Genome Res 12, 656–664.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Khemka, N., Singh, V.K., Garg, R., and Jain, M. (2016). Genome-wide analysis of long intergenic non-coding RNAs in chickpea and their potential role in flower development. Sci Rep 6, 33297.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Li, L., Eichten, S.R., Shimizu, R., Petsch, K., Yeh, C.T., Wu, W., Chettoor, A.M., Givan, S.A., Cole, R.A., Fowler, J.E., Evans, M.M.S., Scanlon, M.J., Yu, J., Schnable, P.S., Timmermans, M.C.P., Springer, N.M., and Muehlbauer, G.J. (2014). Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15, R40.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Liu, J., Wang, H., and Chua, N.H. (2015). Long noncoding RNA transcriptome of plants. Plant Biotechnol J 13, 319–328.CrossRefPubMedGoogle Scholar
  10. Liu, J., Jung, C., Xu, J., Wang, H., Deng, S., Bernad, L., Arenas-Huertero, C., and Chua, N.H. (2012). Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24, 4333–4345.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Mercer, T.R., Dinger, M.E., and Mattick, J.S. (2009). Long non-coding RNAs: insights into functions. Nat Rev Genet 10, 155–159.CrossRefPubMedGoogle Scholar
  12. Mohammadin, S., Edger, P.P., Pires, J.C., and Schranz, M.E. (2015). Positionally- conserved but sequence-diverged: identification of long noncoding RNAs in the Brassicaceae and Cleomaceae. BMC Plant Biol 15, 217.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Necsulea, A., Soumillon, M., Warnefors, M., Liechti, A., Daish, T., Zeller, U., Baker, J.C., Grützner, F., and Kaessmann, H. (2014). The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505, 635–640.CrossRefPubMedGoogle Scholar
  14. Nitsche, A., Rose, D., Fasold, M., Reiche, K., and Stadler, P.F. (2015). Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. RNA 21, 801–812.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Nordberg, H., Cantor, M., Dusheyko, S., Hua, S., Poliakov, A., Shabalov, I., Smirnova, T., Grigoriev, I.V., and Dubchak, I. (2014). The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucl Acids Res 42, D26–D31.CrossRefPubMedGoogle Scholar
  16. Pang, K.C., Frith, M.C., and Mattick, J.S. (2006). Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genets 22, 1–5.CrossRefGoogle Scholar
  17. Paytuví Gallart, A., Hermoso Pulido, A., Anzar Martínez de Lagrán, I., Sanseverino, W., and Aiese Cigliano, R. (2016). GREENC: a Wiki-based database of plant lncRNAs. Nucleic Acids Res 44, D1161–D1166.CrossRefPubMedGoogle Scholar
  18. Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., and Salzberg, S.L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11, 1650–1667.CrossRefPubMedPubMedCentralGoogle Scholar
  19. St Laurent, G., Shtokalo, D., Tackett, M.R., Yang, Z., Eremina, T., Wahlestedt, C., Urcuqui-Inchima, S., Seilheimer, B., McCaffrey, T.A., and Kapranov, P. (2012). Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics 13, 504.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Wang, L., and Wang, J.W. (2015). Coding function for non-coding RNA in plants-insights from miRNA encoded peptide (miPEP). Sci China Life Sci 58, 503–505.CrossRefPubMedGoogle Scholar
  21. Yanai, I., Benjamin, H., Shmoish, M., Chalifa-Caspi, V., Shklar, M., Ophir, R., Bar-Even, A., Horn-Saban, S., Safran, M., Domany, E., Lancet, D., and Shmueli, O. (2005). Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–659.CrossRefPubMedGoogle Scholar
  22. Zou, C., Wang, Q., Lu, C., Yang, W., Zhang, Y., Cheng, H., Feng, X., Prosper, M.A., and Song, G. (2016). Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). Sci China Life Sci 59, 164–171.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Pingchuan Deng
    • 1
  • Shu Liu
    • 1
  • Xiaojun Nie
    • 2
  • Song Weining
    • 2
  • Liang Wu
    • 1
  1. 1.State Key Laboratory of Rice Biology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
  2. 2.State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingChina

Personalised recommendations