Advertisement

Science China Life Sciences

, Volume 61, Issue 5, pp 578–592 | Cite as

Secretome profiling reveals temperature-dependent growth of Aspergillus fumigatus

  • Dongyu Wang
  • Lili Zhang
  • Haiyue Zou
  • Lushan Wang
Research Paper
  • 39 Downloads

Abstract

Aspergillus fumigatus is a ubiquitous opportunistic fungus. In this study, systematic analyses were carried out to study the temperature adaptability of A. fumigatus. A total of 241 glycoside hydrolases and 69 proteases in the secretome revealed the strong capability of A. fumigatus to degrade plant biomass and protein substrates. In total, 129 pathogenesis-related proteins detected in the secretome were strongly correlated with glycoside hydrolases and proteases. The variety and abundance of proteins remained at temperatures of 34°C–45°C. The percentage of endo-1,4-xylanase increased when the temperature was lowered to 20°C, while the percentage of cellobiohydrolase increased as temperature was increased, suggesting that the strain obtains carbon mainly by degrading xylan and cellulose, and the main types of proteases in the secretome were aminopeptidases and carboxypeptidases. Only half of the proteins were retained and their abundance declined to 9.7% at 55°C. The activities of the remaining β-glycosidases and proteases were merely 35% and 24%, respectively, when the secretome was treated at 60°C for 2 h. Therefore, temperatures >60°C restrict the growth of A. fumigatus.

Keywords

Aspergillus fumigatus functional secretome temperature adaptability opportunistic pathogen saprophytic fungus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Juntao Liu and Yang Li from the School of Mathematics, Shandong University for providing assistance with writing of the manuscript. This work was supported by the National Program on Key Research and Development Program of China (2016YFD0800601), Major National Science and Technology Projects (2013ZX10004217) and the Open Funding Project of the State Key Laboratory of Biochemical Engineering (2015KF-05).

Supplementary material

11427_2017_9168_MOESM1_ESM.docx (2.4 mb)
Supplementary material, approximately 2.35 MB.

References

  1. Abad, A., Victoria Fernández-Molina, J., Bikandi, J., Ramírez, A., Margareto, J., Sendino, J., Luis Hernando, F., Pontón, J., Garaizar, J., and Rementeria, A. (2010). What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol 27, 155–182.CrossRefPubMedGoogle Scholar
  2. Adav, S.S., Ravindran, A., and Sze, S.K. (2013). Proteomic analysis of temperature dependent extracellular proteins from Aspergillus fumigatus grown under solid-state culture condition. J Proteome Res 12, 2715–2731.CrossRefPubMedGoogle Scholar
  3. Bensimon, A., Heck, A.J.R., and Aebersold, R. (2012). Mass spectrometry–based proteomics and network biology. Annu Rev Biochem 81, 379–405.CrossRefPubMedGoogle Scholar
  4. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.CrossRefPubMedGoogle Scholar
  5. Burns, C., Geraghty, R., Neville, C., Murphy, A., Kavanagh, K., and Doyle, S. (2005). Identification, cloning, and functional expression of three glutathione transferase genes from Aspergillus fumigatus. Fungal Genet Biol 42, 319–327.CrossRefPubMedGoogle Scholar
  6. Cramer, R.A. (2016). In vivo veritas: Aspergillus fumigatus proliferation and pathogenesis—conditionally speaking. Virulence 7, 7–10.CrossRefPubMedGoogle Scholar
  7. Creighton, T.E. (1993). Proteins: structures and molecular properties. Febs Lett 323, 294.Google Scholar
  8. Culibrk, L., Croft, C.A., and Tebbutt, S.J. (2016). Systems biology approaches for host-fungal interactions: an expanding multi-omics frontier. OMICS 20, 127–138.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Denning, D.W., Anderson, M.J., Turner, G., Latgé, J.P., and Bennett, J.W. (2002). Sequencing the Aspergillus fumigatus genome. Lancet Infect Diss 2, 251–253.CrossRefGoogle Scholar
  10. Frisvad, J. and R. Samson (1990). Chemotaxonomy and morphology of Aspergillus fumigatus and related taxa. In: Modern concepts in Penicillium and Aspergillus classification. (Boston: Springer), pp. 201–208.CrossRefGoogle Scholar
  11. Fuchs, J.E., von Grafenstein, S., Huber, R.G., Kramer, C., and Liedl, K.R. (2013). Substrate-driven mapping of the degradome by comparison of sequence logos. PLoS Comput Biol 9, e1003353.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ghazaei, C. (2017). Molecular insights into pathogenesis and infection with Aspergillus fumigatus. Malays J Med Sci 24, 10.PubMedPubMedCentralGoogle Scholar
  13. Gibbons, J.G., Beauvais, A., Beau, R., McGary, K.L., Latgé, J.P., and Rokas, A. (2012). Global transcriptome changes underlying colony growth in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot Cell 11, 68–78.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Girard, V., Dieryckx, C., Job, C., and Job, D. (2013). Secretomes: the fungal strike force. Proteomics 13, 597–608.CrossRefPubMedGoogle Scholar
  15. Gong, W., Zhang, H., Liu, S., Zhang, L., Gao, P., Chen, G., and Wang, L. (2015). Comparative secretome analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum during solid-state fermentation. Appl Biochem Biotechnol 177, 1252–1271.CrossRefPubMedGoogle Scholar
  16. Gong, W., Zhang, H., Tian, L., Liu, S., Wu, X., Li, F., and Wang, L. (2016). Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescence-assisted carbohydrate electrophoresis. Electrophoresis 37, 1640–1650.CrossRefPubMedGoogle Scholar
  17. Jena, H., Halder, S.K., Soren, J.P., Takó, M., and Mondal, K.C. (2016). Valorization of wheat bran for cost-effective production of cellulolytic enzymes by Aspergillus fumigatus SKH2 and utilization of the enzyme cocktail for saccharification of lignocellulosic biomass. Acta Biol Szeged 60, 129–137.Google Scholar
  18. Köhler, J.R., Casadevall, A., and Perfect, J. (2015). The spectrum of fungi that infects humans. Cold Spring Harbor Perspect Med 5, a019273–a019273.CrossRefGoogle Scholar
  19. Katsimpouras, C., Dimarogona, M., Petropoulos, P., Christakopoulos, P., and Topakas, E. (2016). A thermostable GH26 endo-β-mannanase from Myceliophthora thermophila capable of enhancing lignocellulose degradation. Appl Microbiol Biotechnol 100, 8385–8397.CrossRefPubMedGoogle Scholar
  20. Kozakiewicz, Z., and Smith, D. (1994). Physiology of Aspergillus. In: Biotechnology Handbooks 7. Aspergillus, R.F. Atkins, R.F. Sherwood, eds. (New York: Plenum Press), pp. 23–40.Google Scholar
  21. Lantz, M.S., and Ciborowski, P. (1994). Zymographic techniques for detection and characterization of microbial proteases. Methods Enzymol 235, 563–594.CrossRefPubMedGoogle Scholar
  22. Latgé, J.P. (1999). Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12, 310–350.PubMedPubMedCentralGoogle Scholar
  23. Leuenberger, P., Ganscha, S., Kahraman, A., Cappelletti, V., Boersema, P.J., von Mering, C., Claassen, M., and Picotti, P. (2017). Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability. Science 355, eaai7825.CrossRefPubMedGoogle Scholar
  24. Liu, D., Li, J., Shuang, Z., Zhang, R., Wang, M., Miao, Y., Shen, Y., and Shen, Q. (2013). Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnol Biofuels 6, 1–16.CrossRefGoogle Scholar
  25. Liu, H., Sadygov, R.G., and Yates, J.R. (2004). A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76, 4193–4201.CrossRefPubMedGoogle Scholar
  26. Martinez-Rossi, N.M., Jacob, T.R., Sanches, P.R., Peres, N.T., Lang, E.A., Martins, M.P., and Rossi, A. (2016). Heat shock proteins in dermatophytes: current advances and perspectives. Curr Genomics 17, 99–111.CrossRefPubMedPubMedCentralGoogle Scholar
  27. McDonagh, A., Fedorova, N.D., Crabtree, J., Yu, Y., Kim, S., Chen, D., Loss, O., Cairns, T., Goldman, G., Armstrong-James, D., Haynes, K., Haas, H., Schrettl, M., May, G., Nierman, W.C., and Bignell, E. (2008). Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog 4, e1000154.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Miao, Y., Liu, D., Li, G., Li, P., Xu, Y., Shen, Q., and Zhang, R. (2015). Genome-wide transcriptomic analysis of a superior biomass-degrading strain of A. fumigatus revealed active lignocellulose-degrading genes. BMC genomics 16, 1.Google Scholar
  29. Millner, P., Marsh, P., Snowden, R., and Parr, J. (1977). Occurrence of Aspergillus fumigatus during composting of sewage sludge. Appl Environ Microbiol 34, 765–772.PubMedPubMedCentralGoogle Scholar
  30. Nierman, W.C., Pain, A., Anderson, M.J., Wortman, J.R., Kim, H.S., Arroyo, J., Berriman, M., Abe, K., Archer, D.B., Bermejo, C., Bennett, J., Bowyer, P., Chen, D., Collins, M., Coulsen, R., Davies, R., Dyer, P.S., Farman, M., Fedorova, N., Fedorova, N., Feldblyum, T.V., Fischer, R., Fosker, N., Fraser, A., García, J.L., García, M.J., Goble, A., Goldman, G.H., Gomi, K., Griffith-Jones, S., Gwilliam, R., Haas, B., Haas, H., Harris, D., Horiuchi, H., Huang, J., Humphray, S., Jiménez, J., Keller, N., Khouri, H., Kitamoto, K., Kobayashi, T., Konzack, S., Kulkarni, R., Kumagai, T., Lafon, A., Lafton, A., Latgé, J.P., Li, W., Lord, A., Lu, C., Majoros, W.H., May, G.S., Miller, B.L., Mohamoud, Y., Molina, M., Monod, M., Mouyna, I., Mulligan, S., Murphy, L., O’Neil, S., Paulsen, I., Peñalva, M.A., Pertea, M., Price, C., Pritchard, B.L., Quail, M.A., Rabbinowitsch, E., Rawlins, N., Rajandream, M.A., Reichard, U., Renauld, H., Robson, G.D., Rodriguez de Córdoba, S., Rodríguez-Peña, J.M., Ronning, C.M., Rutter, S., Salzberg, S.L., Sanchez, M., Sánchez-Ferrero, J.C., Saunders, D., Seeger, K., Squares, R., Squares, S., Takeuchi, M., Tekaia, F., Turner, G., Vazquez de Aldana, C.R., Weidman, J., White, O., Woodward, J., Yu, J.H., Fraser, C., Galagan, J.E., Asai, K., Machida, M., Hall, N., Barrell, B., and Denning, D.W. (2005). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156.CrossRefPubMedGoogle Scholar
  31. O’Meara, T.R., and Cowen, L.E. (2014). Hsp90-dependent regulatory circuitry controlling temperature-dependent fungal development and virulence. Cell Microbiol 16, 473–481.CrossRefPubMedGoogle Scholar
  32. Paulussen, C., Hallsworth, J.E., Álvarez-Pérez, S., Nierman, W.C., Hamill, P.G., Blain, D., Rediers, H., and Lievens, B. (2017). Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol 10, 296–322.CrossRefPubMedGoogle Scholar
  33. Robledo, A., Aguilar, C.N., Belmares-Cerda, R.E., Flores-Gallegos, A.C., Contreras-Esquivel, J.C., Montañez, J.C., and Mussatto, S.I. (2016). Production of thermostable xylanase by thermophilic fungal strains isolated from maize silage. CyTA-J Food 14, 302–308.CrossRefGoogle Scholar
  34. Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H., and Zehfus, M.H. (1985). Hydrophobicity of amino acid residues in globular proteins. Science 229, 834–838.CrossRefPubMedGoogle Scholar
  35. Saqib, A.A.N., Farooq, A., Iqbal, M., Hassan, J.U., Hayat, U., and Baig, S. (2012). A thermostable crude endoglucanase produced by Aspergillus fumigatus in a novel solid state fermentation process using isolated free water. Enzyme Res 2012, 1–6.CrossRefGoogle Scholar
  36. Saykhedkar, S., Ray, A., Ayoubi-Canaan, P., Hartson, S.D., Prade, R., and Mort, A.J. (2012). A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. Biotechnol Biofuels 5, 52.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sheikh-Ali, S.I., Ahmad, A., Mohd-Setapar, S.H., Zakaria, Z.A., Abdul- Talib, N., Khamis, A.K., and Hoque, M.E. (2014). The potential hazards of Aspergillus sp. in foods and feeds, and the role of biological treatment: a review. J Microbiol 52, 807–818.PubMedGoogle Scholar
  38. Shen, H.D., Tam, M.F., Tang, R.B., and Chou, H. (2007). Aspergillus and Penicillium allergens: focus on proteases. Curr Allergy Asthma Rep 7, 351–356.CrossRefPubMedGoogle Scholar
  39. Singh, S., Madlala, A.M., and Prior, B.A. (2003). Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27, 3–16.CrossRefPubMedGoogle Scholar
  40. Sugui, J.A., Pardo, J., Chang, Y.C., Zarember, K.A., Nardone, G., Galvez, E.M., Müllbacher, A., Gallin, J.I., Simon, M.M., and Kwon-Chung, K.J. (2007). Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot Cell 6, 1562–1569.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tekaia, F., and Latgé, J.P. (2005). Aspergillus fumigatus: saprophyte or pathogen? Curr Opin Microbiol 8, 385–392.CrossRefPubMedGoogle Scholar
  42. Wang, D., Sun, J., Yu, H.L., Li, C.X., Bao, J., and Xu, J.H. (2012). Maximum saccharification of cellulose complex by an enzyme cocktail supplemented with cellulase from newly isolated Aspergillus fumigatus ECU0811. Appl Biochem Biotechnol 166, 176–186.CrossRefPubMedGoogle Scholar
  43. Warcup, J.H. (1951). The ecology of soil fungi. Trans Brit Mycol Soc 34, 376–399.CrossRefGoogle Scholar
  44. Wesenberg, D., Kyriakides, I., and Agathos, S.N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotech Adv 22, 161–187.CrossRefGoogle Scholar
  45. Wolfenden, R., Andersson, L., Cullis, P.M., and Southgate, C.C.B. (1981). Affinities of amino acid side chains for solvent water. Biochemistry 20, 849–855.CrossRefPubMedGoogle Scholar
  46. Xing, S., Li, G., Sun, X., Ma, S., Chen, G., Wang, L., and Gao, P. (2013). Dynamic changes in xylanases and β-1,4-endoglucanases secreted by aspergillus niger An-76 in response to hydrolysates of lignocellulose polysaccharide. Appl Biochem Biotechnol 171, 832–846.CrossRefPubMedGoogle Scholar
  47. Zhang, L., Ma, H., Zhang, H., Xun, L., Chen, G., and Wang, L. (2015). Thermomyces lanuginosus is the dominant fungus in maize straw composts. Bioresour Tech 197, 266–275.CrossRefGoogle Scholar
  48. Zhang, L., Zhang, H., Wang, Z., Chen, G., and Wang, L. (2016). Dynamic changes of the dominant functioning microbial community in the compost of a 90-m3 aerobic solid state fermentor revealed by integrated meta-omics. Bioresour Tech 203, 1–10.CrossRefGoogle Scholar
  49. Zhang, X., Liu, N., Yang, F., Li, J., Wang, L., Chen, G., and Gao, P. (2012). In situ demonstration and quantitative analysis of the intrinsic properties of glycoside hydrolases. Electrophoresis 33, 280–287.CrossRefPubMedGoogle Scholar
  50. Zhou, J.Y., Schepmoes, A.A., Zhang, X., Moore, R.J., Monroe, M.E., Lee, J.H., Camp Ii, D.G., Smith, R.D., and Qian, W.J. (2010). Improved LC-MS/MS spectral counting statistics by recovering low-scoring spectra matched to confidently identified peptide sequences. J Proteome Res 9, 5698–5704.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Dongyu Wang
    • 1
  • Lili Zhang
    • 1
  • Haiyue Zou
    • 1
  • Lushan Wang
    • 1
  1. 1.State Key Laboratory of Microbial TechnologyShandong UniversityJinanChina

Personalised recommendations