Science China Life Sciences

, Volume 61, Issue 2, pp 155–161 | Cite as

Transfer RNA-derived small RNAs in plants

Review

Abstract

Rather than random degradation products, the 18 to 40 nucleotides (nt) transfer RNA-derived small RNAs (tsRNAs) are RNA species generated specifically from pre-RNAs or mature tRNAs in archaea, bacteria and eukaryotes. Recent studies from animal systems have shown that tsRNAs are important non-coding RNAs that regulate gene expression at the transcriptional and/or post-transcriptional levels. They are involved in various biological processes, such as cell proliferation, tumor genesis, stress response and intergenerational epigenetic inheritance. In this review, we will summarize the discovery, biogenesis, and function of tsRNAs in higher plants. In addition, analysis on tsRNAs from lower plants is shown.

Keywords

tRNA derived-small RNAs tsRNAs biogenesis plant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the General Program of National Natural Science Foundation of China (31471165 to Zhicheng Dong).

Supplementary material

11427_2017_9167_MOESM1_ESM.docx (17 kb)
Supplemental Materials and Methods

References

  1. Abelson, J., Trotta, C.R., and Li, H. (1998). tRNA splicing. J Biol Chem 273, 12685–12688.CrossRefPubMedGoogle Scholar
  2. Alves, C.S., Vicentini, R., Duarte, G.T., Pinoti, V.F., Vincentz, M., and Nogueira, F.T.S. (2017). Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants. Plant Mol Biol 93, 35–48.CrossRefPubMedGoogle Scholar
  3. Bariola, P.A., Howard, C.J., Taylor, C.B., Verburg, M.T., Jaglan, V.D., and Green, P.J. (1994). The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant J 6, 673–685.CrossRefPubMedGoogle Scholar
  4. Ceballos, M., and Vioque, A. (2007). tRNase Z. Protein Pept Lett 14, 137–145.CrossRefPubMedGoogle Scholar
  5. Chen, C.J., Liu, Q., Zhang, Y.C., Qu, L.H., Chen, Y.Q., and Gautheret, D. (2011). Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biol 8, 538–547.CrossRefPubMedGoogle Scholar
  6. Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., Feng, G., Peng, H., Zhang, X., Zhang, Y., Qian, J., Duan, E., Zhai, Q., and Zhou, Q. (2016). Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400.CrossRefPubMedGoogle Scholar
  7. Cognat, V., Morelle, G., Megel, C., Lalande, S., Molinier, J., Vincent, T., Small, I., Duchêne, A.M., and Maréchal-Drouard, L. (2017). The nuclear and organellar tRNA-derived RNA fragment population in Arabidopsis thaliana is highly dynamic. Nucleic Acids Res 45, 3460–3472.CrossRefPubMedGoogle Scholar
  8. Cole, C., Sobala, A., Lu, C., Thatcher, S.R., Bowman, A., Brown, J.W.S., Green, P.J., Barton, G.J., and Hutvagner, G. (2009). Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15, 2147–2160.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Coruh, C., Cho, S.H., Shahid, S., Liu, Q., Wierzbicki, A., and Axtell, M.J. (2015). Comprehensive annotation of Physcomitrella patens small RNA loci reveals that the heterochromatic short interfering RNA pathway is largely conserved in land plants. Plant Cell 27, 2148–2162.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Frank, D.N., and Pace, N.R. (1998). Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu Rev Biochem 67, 153–180.CrossRefPubMedGoogle Scholar
  11. Fu, H., Feng, J., Liu, Q., Sun, F., Tie, Y., Zhu, J., Xing, R., Sun, Z., and Zheng, X. (2009). Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 583, 437–442.CrossRefPubMedGoogle Scholar
  12. Gebetsberger, J., and Polacek, N. (2013). Slicing tRNAs to boost functional ncRNA diversity. RNA Biol 10, 1798–1806.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gruissem, W., Prescott, D.M., Greenberg, B.M., and Hallick, R.B. (1982). Transcription of E. coli and Euglena chloroplast tRNA gene clusters and processing of polycistronic transcripts in a HeLa cell-free system. Cell 30, 81–92.CrossRefPubMedGoogle Scholar
  14. Guleria, P., Mahajan, M., Bhardwaj, J., and Yadav, S.K. (2011). Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genomics Proteomics Bioinformatics 9, 183–199.CrossRefPubMedGoogle Scholar
  15. Hackenberg, M., Huang, P.J., Huang, C.Y., Shi, B.J., Gustafson, P., and Langridge, P. (2013). A comprehensive expression profile of microRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and-sufficient conditions. DNA Res 20, 109–125.CrossRefPubMedGoogle Scholar
  16. Hanada, T., Weitzer, S., Mair, B., Bernreuther, C., Wainger, B.J., Ichida, J., Hanada, R., Orthofer, M., Cronin, S.J., Komnenovic, V., Minis, A., Sato, F., Mimata, H., Yoshimura, A., Tamir, I., Rainer, J., Kofler, R., Yaron, A., Eggan, K.C., Woolf, C.J., Glatzel, M., Herbst, R., Martinez, J., and Penninger, J.M. (2013). CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495, 474–480.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A.Z., and Kay, M.A. (2010). Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673–695.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Honda, S., Loher, P., Shigematsu, M., Palazzo, J.P., Suzuki, R., Imoto, I., Rigoutsos, I., and Kirino, Y. (2015). Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc Natl Acad Sci USA 112, e3816–E3825.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hsieh, L.C., Lin, S.I., Shih, A.C.C., Chen, J.W., Lin, W.Y., Tseng, C.Y., Li, W.H., and Chiou, T.J. (2009). Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151, 2120–2132.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ivanov, P., Emara, M.M., Villen, J., Gygi, S.P., and Anderson, P. (2011). Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43, 613–623.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kruszka, K., Barneche, F., Guyot, R., Ailhas, J., Meneau, I., Schiffer, S., Marchfelder, A., and Echeverria, M. (2003). Plant dicistronic tRNAsnoRNA genes: a new mode of expression of the small nucleolar RNAs processed by RNase Z. EMBO J 22, 621–632.CrossRefPubMedPubMedCentralGoogle Scholar
  22. LeBrasseur, N.D., MacIntosh, G.C., Perez-Amador, M.A., Saitoh, M., and Green, P.J. (2002). Local and systemic wound-induction of RNase and nuclease activities in Arabidopsis: RNS1 as a marker for a JA-independent systemic signaling pathway. Plant J 29, 393–403.CrossRefPubMedGoogle Scholar
  23. Lee, Y.S., Shibata, Y., Malhotra, A., and Dutta, A. (2009). A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23, 2639–2649.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Loizeau, K., Qu, Y., Depp, S., Fiechter, V., Ruwe, H., Lefebvre-Legendre, L., Schmitz-Linneweber, C., and Goldschmidt-Clermont, M. (2014). Small RNAs reveal two target sites of the RNA-maturation factor Mbb1 in the chloroplast of Chlamydomonas. Nucleic Acids Res 42, 3286–3297.CrossRefPubMedGoogle Scholar
  25. Loss-Morais, G., Waterhouse, P.M., and Margis, R. (2013). Description of plant tRNA-derived RNA fragments (tRFs) associated with argonaute and identification of their putative targets. Biol Direct 8, 6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Martinez, G., Choudury, S.G., and Slotkin, R.K. (2017). tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Res 45, 5142–5152.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Maute, R.L., Schneider, C., Sumazin, P., Holmes, A., Califano, A., Basso, K., and Dalla-Favera, R. (2013). tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci USA 110, 1404–1409.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nowacka, M., Strozycki, P.M., Jackowiak, P., Hojka-Osinska, A., Szymanski, M., and Figlerowicz, M. (2013). Identification of stable, high copy number, medium-sized RNA degradation intermediates that accumulate in plants under non-stress conditions. Plant Mol Biol 83, 191–204.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Raina, M., and Ibba, M. (2014). tRNAs as regulators of biological processes. Front Genet 5, 171.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Schorn, A.J., Gutbrod, M.J., LeBlanc, C., and Martienssen, R. (2017). LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170, 61–71.e11.CrossRefPubMedGoogle Scholar
  31. Schramm, L., and Hernandez, N. (2002). Recruitment of RNA polymerase III to its target promoters. Genes Dev 16, 2593–2620.CrossRefPubMedGoogle Scholar
  32. Sharma, U., Conine, C.C., Shea, J.M., Boskovic, A., Derr, A.G., Bing, X.Y., Belleannee, C., Kucukural, A., Serra, R.W., Sun, F., Song, L., Carone, B.R., Ricci, E.P., Li, X.Z., Fauquier, L., Moore, M.J., Sullivan, R., Mello, C.C., Garber, M., and Rando, O.J. (2016). Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396.CrossRefPubMedGoogle Scholar
  33. Thompson, D.M., Lu, C., Green, P.J., and Parker, R. (2008). tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14, 2095–2103.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Thompson, D.M., and Parker, R. (2009). The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185, 43–50.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tocchini-Valentini, G.D., Fruscoloni, P., and Tocchini-Valentini, G.P. (2009). Processing of multiple-intron-containing pretRNA. Proc Natl Acad Sci USA 106, 20246–20251.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Weiner, A.M. (2004). tRNA maturation: RNA polymerization without a nucleic acid template. Curr Biol 14, R883–R885.CrossRefPubMedGoogle Scholar
  37. Zhang, S., Sun, L., and Kragler, F. (2009). The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol 150, 378–387.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations