Skip to main content
Log in

Grass phasiRNAs and male fertility

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Recent studies have indicated that a special type of small noncoding RNAs, phased small-interfering RNAs (phasiRNAs) play crucial roles in many cellular processes of plant development. PhasiRNAs are generated from long RNA precursors at intervals of 21 or 24 nt in plants, and they are produced from both protein-coding gene and long noncoding RNA genes. Different from those in eudicots, grass phasiRNAs include a special class of small RNAs that are specifically expressed in reproductive organs. These grass phasiRNAs are associated with gametogenesis, especially with anther development and male fertility. In this review, we summarized current knowledge on these small noncoding RNAs in male germ cells and their possible biological functions and mechanisms in grass species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axtell, M.J. (2013). Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64, 137–159.

    Article  CAS  PubMed  Google Scholar 

  • Barakat, A., Sriram, A., Park, J., Zhebentyayeva, T., Main, D., and Abbott, A. (2012). Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genomics 13, 481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M., and Benning, C. (1998). AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17, 170–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges, F., and Martienssen, R.A. (2015). The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16, 727–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., and Liu, Y.G. (2014). Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65, 579–606.

    Article  CAS  PubMed  Google Scholar 

  • Cui, J., You, C., and Chen, X. (2017). The evolution of microRNAs in plants. Curr Opin Plant Biol 35, 61–67.

    Article  CAS  PubMed  Google Scholar 

  • Dukowic-Schulze, S., Sundararajan, A., Ramaraj, T., Kianian, S., Pawlowski, W.P., Mudge, J., and Chen, C. (2016). Novel meiotic miRNAs and indications for a role of phasiRNAs in meiosis. Front Plant Sci 7, 762.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan, Y., Yang, J., Mathioni, S.M., Yu, J., Shen, J., Yang, X., Wang, L., Zhang, Q., Cai, Z., Xu, C., Li, X., Xiao, J., Meyers, B.C., and Zhang, Q. (2016). PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci USA 113, 15144–15149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei, Q., Xia, R., and Meyers, B.C. (2013). Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25, 2400–2415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei, Q., Yang, L., Liang, W., Zhang, D., and Meyers, B.C. (2016). Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways. J Exp Bot 67, 6037–6049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, Q., and Wang, P.J. (2014). Mammalian piRNAs. Spermatogenesis 4, e27889.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, Z., Luo, X., Shi, T., Cai, B., Zhang, Z., Cheng, Z., and Zhuang, W. (2012). Identification and validation of potential conserved microRNAs and their targets in peach (Prunus persica). Mol Cells 34, 239–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gou, L.T., Dai, P., Yang, J.H., Xue, Y., Hu, Y.P., Zhou, Y., Kang, J.Y., Wang, X., Li, H., Hua, M.M., Zhao, S., Hu, S.D., Wu, L.G., Shi, H.J., Li, Y., Fu, X.D., Qu, L.H., Wang, E.D., and Liu, M.F. (2014). Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res 24, 680–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, B.W., Wang, W., Li, C., Weng, Z., and Zamore, P.D. (2015). piRNAguided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 348, 817–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, H., Yang, T.Y., Wu, W.Y., and Zheng, B.L. (2015). Small RNAs in pollen. Sci China Life Sci 58, 246–252.

    Article  CAS  PubMed  Google Scholar 

  • Itoh, J.I., Kitano, H., Matsuoka, M., and Nagato, Y. (2000). SHOOT ORGANIZATION genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice. Plant Cell 12, 2161–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong, D.H., Schmidt, S.A., Rymarquis, L.A., Park, S., Ganssmann, M., German, M.A., Accerbi, M., Zhai, J., Fahlgren, N., Fox, S.E., Garvin, D.F., Mockler, T.C., Carrington, J.C., Meyers, B.C., and Green, P.J. (2013). Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon. Genome Biol 14, R145.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., Appels, R., Pfeifer, M., Tao, Y., Zhang, X., Jing, R., Zhang, C., Ma, Y., Gao, L., Gao, C., Spannagl, M., Mayer, K.F.X., Li, D., Pan, S., Zheng, F., Hu, Q., Xia, X., Li, J., Liang, Q., Chen, J., Wicker, T., Gou, C., Kuang, H., He, G., Luo, Y., Keller, B., Xia, Q., Lu, P., Wang, J., Zou, H., Zhang, R., Xu, J., Gao, J., Middleton, C., Quan, Z., Liu, G., Wang, J., Wang, J., Yang, H., Liu, X., He, Z., Mao, L., and Wang, J. (2013). Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, C., Kasprzewska, A., Tennessen, K., Fernandes, J., Nan, G.L., Walbot, V., Sundaresan, V., Vance, V., and Bowman, L.H. (2009). Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19, 1429–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantar, M., Lucas, S.J., and Budak, H. (2011). miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233, 471–484.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor, M., Arora, R., Lama, T., Nijhawan, A., Khurana, J.P., Tyagi, A.K., and Kapoor, S. (2008). Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 9, 451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelliher, T., and Walbot, V. (2014). Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes. Plant J 77, 639–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komiya, R. (2017). Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing. J Plant Res 130, 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Komiya, R., Ohyanagi, H., Niihama, M., Watanabe, T., Nakano, M., Kurata, N., and Nonomura, K.I. (2014). Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Plant J 78, 385–397.

    Article  CAS  PubMed  Google Scholar 

  • Kurihara, Y., and Watanabe, Y. (2004). Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101, 12753–12758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Shahid, M.Q., Xia, J., Lu, Z., Fang, N., Wang, L., Wu, J., Chen, Z., and Liu, X. (2017). Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice. BMC Genomics 18, 129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, B., Chen, Z., Song, X., Liu, C., Cui, X., Zhao, X., Fang, J., Xu, W., Zhang, H., Wang, X., Chu, C., Deng, X., Xue, Y., and Cao, X. (2007). Oryza sativa Dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19, 2705–2718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., and Qu, L.J. (2008). Meiotic and mitotic cell cycle mutants involved in gametophyte development in Arabidopsis. Mol Plant 1, 564–574.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Wang, Y., Zhu, Q.H., and Fan, L. (2013). Identification of phasiRNAs in wild rice (Oryza rufipogon). Plant Signal Behav 8, e25079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Hao, L., Li, D., Zhu, L., and Hu, S. (2015). Long non-coding RNAs and their biological roles in plants. Genomics Proteomics Bioinformatics 13, 137–147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohn, F., Handler, D., and Brennecke, J. (2015). piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science 348, 812–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagasaki, H., Itoh, J., Hayashi, K., Hibara, K., Satoh-Nagasawa, N., Nosaka, M., Mukouhata, M., Ashikari, M., Kitano, H., Matsuoka, M., Nagato, Y., and Sato, Y. (2007). The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci USA 104, 14867–14871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonomura, K.I., Morohoshi, A., Nakano, M., Eiguchi, M., Miyao, A., Hirochika, H., and Kurata, N. (2007). A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19, 2583–2594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., and Bartel, D.P. (2002). MicroRNAs in plants. Genes Dev 16, 1616–1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh, N., Hong, S., Nishimura, A., Matsuoka, M., Kitano, H., and Nagato, Y. (1999). Initiation of shoot apical meristem in rice: characterization of four SHOOTLESS genes. Development 126, 3629–3636.

    CAS  PubMed  Google Scholar 

  • Shi, M. (1985). The discovery and study of the photosensitive recessive male-sterile rice (Oryza sativa l. Subsp. Japonica). Scient Agr Sin, 2, 006.

    Google Scholar 

  • Song, X., Li, P., Zhai, J., Zhou, M., Ma, L., Liu, B., Jeong, D.H., Nakano, M., Cao, S., Liu, C., Chu, C., Wang, X.J., Green, P.J., Meyers, B.C., and Cao, X. (2012a). Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J 69, 462–474.

    Article  CAS  PubMed  Google Scholar 

  • Song, X., Wang, D., Ma, L., Chen, Z., Li, P., Cui, X., Liu, C., Cao, S., Chu, C., Tao, Y., and Cao, X. (2012b). Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant J 71, 378–389.

    CAS  PubMed  Google Scholar 

  • Sosa-Valencia, G., Palomar, M., Covarrubias, A. A., and Reyes, J. L. (2017). The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought. J Exp Bot 68, 2013–2026.

    PubMed  Google Scholar 

  • Su, C., Yang, X., Gao, S., Tang, Y., Zhao, C., and Li, L. (2014). Identification and characterization of a subset of microRNAs in wheat (Triticum aestivum L.). Genomics 103, 298–307.

    Article  CAS  PubMed  Google Scholar 

  • Ta, K. N., Sabot, F., Adam, H., Vigouroux, Y., De Mita, S., Ghesquiere, A., Do, N. V., Gantet, P., and Jouannic, S. (2016). miR2118-triggered phased siRNAs are differentially expressed during the panicle development of wild and domesticated African rice species. Rice (N Y) 9, 10.

    Article  CAS  PubMed Central  Google Scholar 

  • Walbot, V., and Egger, R.L. (2016). Pre-meiotic anther development: cell fate specification and differentiation. Annu Rev Plant Biol 67, 365–395.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., and Wang, J.W. (2015). Coding function for non-coding RNA in plants—insights from miRNA encoded peptide (miPEP). Sci China Life Sci 58, 503–505.

    Article  PubMed  Google Scholar 

  • Wu, J., Yang, Z., Wang, Y., Zheng, L., Ye, R., Ji, Y., Zhao S., Ji, S., Liu, R., Xu, L., Zheng, H., Zhou, Y., Zhang, X., Cao, X., Xie, L., Wu, Z., Qi, Y., Li, Y. (2015) Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. Elife 4, e05733.

  • Wu, L., Zhang, Q., Zhou, H., Ni, F., Wu, X., and Qi, Y. (2009). Rice microRNA effector complexes and targets. Plant Cell 21, 3421–3435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Z., Allen, E., Wilken, A., and Carrington, J.C. (2005). DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA 102, 12984–12989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, M., Li, Y., Zhang, Q., Xu, T., Qiu, L., Fan, Y., and Wang, L. (2014). Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4. PLoS ONE 9, e110051.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa, M., Peragine, A., Park, M.Y., and Poethig, R.S. (2005). A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19, 2164–2175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai, J., Zhang, H., Arikit, S., Huang, K., Nan, G.L., Walbot, V., and Meyers, B.C. (2015). Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci USA 112, 3146–3151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Xia, R., Meyers, B.C., and Walbot, V. (2015a). Evolution, functions, and mysteries of plant ARGONAUTE proteins. Curr Opin Plant Biol 27, 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., Kang, J.Y., Gou, L.T., Wang, J., Xue, Y., Skogerboe, G., Dai, P., Huang, D.W., Chen, R., Fu, X.D., Liu, M.F., and He, S. (2015b). MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res 25, 193–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y.C., Liao, J.Y., Li, Z.Y., Yu, Y., Zhang, J.P., Li, Q.F., Qu, L.H., Shu, W.S., and Chen, Y.Q. (2014). Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15, 512.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, Y., Wang, Y., Wu, J., Ding, B., and Fei, Z. (2015). A dynamic evolutionary and functional landscape of plant phased small interfering RNAs. BMC Biol 13, 32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou, C., Wang, Q., Lu, C., Yang, W., Zhang, Y., Cheng, H., Feng, X., Prosper, M.A., and Song, G. (2016). Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). Sci China Life Sci 59, 164–171.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91640202, 91335104) and the grants from Guangdong Province (2016A030308015) and Guangzhou (201707020018, 201710010029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhou, Y., Zhang, Y. et al. Grass phasiRNAs and male fertility. Sci. China Life Sci. 61, 148–154 (2018). https://doi.org/10.1007/s11427-017-9166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9166-3

Keywords

Navigation