Advertisement

Science China Life Sciences

, Volume 61, Issue 2, pp 170–177 | Cite as

Structure and mechanism of plant histone mark readers

Review

Abstract

In eukaryotes, epigenetic-based mechanisms are involved in almost all the important biological processes. Amongst different epigenetic regulation pathways, the dynamic covalent modifications on histones are the most extensively investigated and characterized types. The covalent modifications on histone can be “read” by specific protein domains and then subsequently trigger downstream signaling events. Plants generally possess epigenetic regulation systems similar to animals and fungi, but also exhibit some plant-specific features. Similar to animals and fungi, plants require distinct protein domains to specifically “read” modified histones in both modification-specific and sequence-specific manners. In this review, we will focus on recent progress of the structural studies on the recognition of the epigenetic marks on histones by plant reader proteins, and further summarize the general and exceptional features of plant histone mark readers.

Keywords

epigenetics histone mark histone modifications structure plant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFA0503200), National Natural Science Foundation of China (31622032), and the Chinese Academy of Sciences to Jiamu Du.

References

  1. Aladjem, M.I. (2007). Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 8, 588–600.CrossRefPubMedGoogle Scholar
  2. Andrews, F.H., Tong, Q., Sullivan, K.D., Cornett, E.M., Zhang, Y., Ali, M., Ahn, J.W., Pandey, A., Guo, A.H., Strahl, B.D., Costello, J.C., Espinosa, J.M., Rothbart, S.B., and Kutateladze, T.G. (2016). Multivalent chromatin engagement and inter-domain crosstalk regulate MORC3 ATPase. Cell Rep 16, 3195–3207.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bergamin, E., Sarvan, S., Malette, J., Eram, M.S., Yeung, S., Mongeon, V., Joshi, M., Brunzelle, J.S., Michaels, S.D., Blais, A., Vedadi, M., and Couture, J.F. (2017). Molecular basis for the methylation specificity of ATXR5 for histone H3. Nucleic Acids Res 45, 6375–6387.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berger, S.L., Kouzarides, T., Shiekhattar, R., and Shilatifard, A. (2009). An operational definition of epigenetics. Genes Dev 23, 781–783.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blus, B.J., Wiggins, K., and Khorasanizadeh, S. (2011). Epigenetic virtues of chromodomains. Crit Rev Biochem Mol Biol 46, 507–526.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bu, Z., Yu, Y., Li, Z., Liu, Y., Jiang, W., Huang, Y., and Dong, A.W. (2014). Regulation of Arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression. PLoS Genet 10, e1004617.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Costas, C., de la Paz Sanchez, M., Stroud, H., Yu, Y., Oliveros, J.C., Feng, S., Benguria, A., López-Vidriero, I., Zhang, X., Solano, R., Jacobsen, S.E., and Gutierrez, C. (2011). Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks. Nat Struct Mol Biol 18, 395–400.CrossRefPubMedPubMedCentralGoogle Scholar
  8. de la Paz Sanchez, M., and Gutierrez, C. (2009). Arabidopsis ORC1 is a PHD-containing H3K4me3 effector that regulates transcription. Proc Natl Acad Sci USA 106, 2065–2070.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Du, J. (2016). Structure and mechanism of plant DNA methyltransferases. Adv Exp Med Biol 945, 173–192.CrossRefPubMedGoogle Scholar
  10. Du, J., Johnson, L.M., Jacobsen, S.E., and Patel, D.J. (2015). DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol 16, 519–532.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Du, J., Zhong, X., Bernatavichute, Y.V., Stroud, H., Feng, S., Caro, E., Vashisht, A.A., Terragni, J., Chin, H.G., Tu, A., Hetzel, J., Wohlschlegel, J.A., Pradhan, S., Patel, D.J., and Jacobsen, S.E. (2012). Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151, 167–180.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Duncker, B.P., Chesnokov, I.N., and McConkey, B.J. (2009). The origin recognition complex protein family. Genome Biol 10, 214.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hoppmann, V., Thorstensen, T., Kristiansen, P.E., Veiseth, S.V., Rahman, M.A., Finne, K., Aalen, R.B., and Aasland, R. (2011). The CW domain, a new histone recognition module in chromatin proteins. EMBO J 30, 1939–1952.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hou, Z., Bernstein, D.A., Fox, C.A., and Keck, J.L. (2005). Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing. Proc Natl Acad Sci USA 102, 8489–8494.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hsu, H.C., Stillman, B., and Xu, R.M. (2005). Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing. Proc Natl Acad Sci USA 102, 8519–8524.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jacob, Y., Bergamin, E., Donoghue, M.T.A., Mongeon, V., LeBlanc, C., Voigt, P., Underwood, C.J., Brunzelle, J.S., Michaels, S.D., Reinberg, D., Couture, J.F., and Martienssen, R.A. (2014). Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Science 343, 1249–1253.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jacob, Y., Feng, S., LeBlanc, C.A., Bernatavichute, Y.V., Stroud, H., Cokus, S., Johnson, L.M., Pellegrini, M., Jacobsen, S.E., and Michaels, S.D. (2009). ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat Struct Mol Biol 16, 763–768.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jacob, Y., Stroud, H., Leblanc, C., Feng, S., Zhuo, L., Caro, E., Hassel, C., Gutierrez, C., Michaels, S.D., and Jacobsen, S.E. (2010). Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases. Nature 466, 987–991.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293, 1074–1080.CrossRefPubMedGoogle Scholar
  20. Johnson, L.M., Du, J., Hale, C.J., Bischof, S., Feng, S., Chodavarapu, R.K., Zhong, X., Marson, G., Pellegrini, M., Segal, D.J., Patel, D.J., and Jacobsen, S.E. (2014). SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507, 124–128.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kolasinska-Zwierz, P., Down, T., Latorre, I., Liu, T., Liu, X.S., and Ahringer, J. (2009). Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 41, 376–381.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693–705.CrossRefPubMedGoogle Scholar
  23. Kuo, A.J., Song, J., Cheung, P., Ishibe-Murakami, S., Yamazoe, S., Chen, J.K., Patel, D.J., and Gozani, O. (2012). The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 484, 115–119.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Larschan, E., Alekseyenko, A.A., Gortchakov, A.A., Peng, S., Li, B., Yang, P., Workman, J.L., Park, P.J., and Kuroda, M.I. (2007). MSL complex is attracted to genes marked by H3K36 trimethylation using a sequenceindependent mechanism. Mol Cell 28, 121–133.CrossRefPubMedGoogle Scholar
  25. Law, J.A., Du, J., Hale, C.J., Feng, S., Krajewski, K., Palanca, A.M.S., Strahl, B.D., Patel, D.J., and Jacobsen, S.E. (2013). Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498, 385–389.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Law, J.A., Vashisht, A.A., Wohlschlegel, J.A., and Jacobsen, S.E. (2011). SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV. PLoS Genet 7, e1002195.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Li, M., and Fang, Y.D. (2015). Histone variants: the artists of eukaryotic chromatin. Sci China Life Sci 58, 232–239.CrossRefPubMedGoogle Scholar
  28. Li, S., Yang, Z., Du, X., Liu, R., Wilkinson, A.W., Gozani, O., Jacobsen, S.E., Patel, D.J., and Du, J. (2016a). Structural basis for the unique multivalent readout of unmodified H3 tail by Arabidopsis ORC1b BAH-PHD cassette. Structure 24, 486–494.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li, S., Yen, L., Pastor, W.A., Johnston, J.B., Du, J., Shew, C.J., Liu, W., Ho, J., Stender, B., Clark, A.T., Burlingame, A.L., Daxinger, L., Patel, D.J., and Jacobsen, S.E. (2016b). Mouse MORC3 is a GHKL ATPase that localizes to H3K4me3 marked chromatin. Proc Natl Acad Sci USA 113, E5108–E5116.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li, Y., and Li, H. (2012). Many keys to push: diversifying the ‘readership’ of plant homeodomain fingers. Acta Biochim Biophys Sin 44, 28–39.CrossRefPubMedGoogle Scholar
  31. Li, Y., Zhao, D., Chen, Z., and Li, H. (2017). YEATS domain: Linking histone crotonylation to gene regulation. Transcription 8, 9–14.CrossRefPubMedGoogle Scholar
  32. Liu, J., Bai, G., Zhang, C., Chen, W., Zhou, J., Zhang, S., Chen, Q., Deng, X., He, X.J., and Zhu, J.K. (2011). An atypical component of RNA-directed DNA methylation machinery has both DNA methylation-dependent and-independent roles in locus-specific transcriptional gene silencing. Cell Res 21, 1691–1700.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu, Y., and Min, J. (2016). Structure and function of histone methylationbinding proteins in plants. Biochem J 473, 1663–1680.CrossRefPubMedGoogle Scholar
  34. Liu, Y., Tempel, W., Zhang, Q., Liang, X., Loppnau, P., Qin, S., and Min, J. (2016a). Family-wide characterization of histone binding abilities of human CW domain-containing proteins. J Biol Chem 291, 9000–9013.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu, Y., Wu, H., Yu, Y., and Huang, Y. (2016b). Structural studies on MRG701 chromodomain reveal a novel dimerization interface of MRG proteins in green plants. Protein Cell 7, 792–803.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Matzke, M.A., Kanno, T., and Matzke, A.J.M. (2015). RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu Rev Plant Biol 66, 243–267.CrossRefPubMedGoogle Scholar
  37. Matzke, M.A., and Mosher, R.A. (2014). RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15, 394–408.CrossRefPubMedGoogle Scholar
  38. Mukherjee, K., Brocchieri, L., and Bürglin, T.R. (2009). A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol 26, 2775–2794.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nady, N., Lemak, A., Walker, J.R., Avvakumov, G.V., Kareta, M.S., Achour, M., Xue, S., Duan, S., Allali-Hassani, A., Zuo, X., Wang, Y.X., Bronner, C., Chédin, F., Arrowsmith, C.H., and Dhe-Paganon, S. (2011). Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J Biol Chem 286, 24300–24311.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Patel, D.J. (2016). A structural perspective on readout of epigenetic histone and DNA methylation marks. Cold Spring Harb Perspect Biol 8, a018754.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Patel, D.J., and Wang, Z. (2013). Readout of epigenetic modifications. Annu Rev Biochem 82, 81–118.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Perry, J., and Zhao, Y. (2003). The CW domain, a structural module shared amongst vertebrates, vertebrate-infecting parasites and higher plants. Trends Biochem Sci 28, 576–580.CrossRefPubMedGoogle Scholar
  43. Roudier, F., Ahmed, I., Bérard, C., Sarazin, A., Mary-Huard, T., Cortijo, S., Bouyer, D., Caillieux, E., Duvernois-Berthet, E., Al-Shikhley, L., Giraut, L., Després, B., Drevensek, S., Barneche, F., Dèrozier, S., Brunaud, V., Aubourg, S., Schnittger, A., Bowler, C., Martin-Magniette, M.L., Robin, S., Caboche, M., and Colot, V. (2011). Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30, 1928–1938.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Stroud, H., Do, T., Du, J., Zhong, X., Feng, S., Johnson, L., Patel, D.J., and Jacobsen, S.E. (2014). Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21, 64–72.CrossRefPubMedGoogle Scholar
  45. Sun, B., Hong, J., Zhang, P., Dong, X., Shen, X., Lin, D., and Ding, J. (2008). Molecular basis of the interaction of Saccharomyces cerevisiae Eaf3 chromo domain with methylated H3K36. J Biol Chem 283, 36504–36512.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Xu, C., Cui, G., Botuyan, M.V., and Mer, G. (2008). Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S. Structure 16, 1740–1750.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yang, N., and Xu, R.M. (2013). Structure and function of the BAH domain in chromatin biology. Crit Rev Biochem Mol Biol 48, 211–221.CrossRefPubMedGoogle Scholar
  48. Zhang, H., Ma, Z.Y., Zeng, L., Tanaka, K., Zhang, C.J., Ma, J., Bai, G., Wang, P., Zhang, S.W., Liu, Z.W., Cai, T., Tang, K., Liu, R., Shi, X., He, X.J., and Zhu, J.K. (2013). DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV. Proc Natl Acad Sci USA 110, 8290–8295.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zhang, P., Du, J., Sun, B., Dong, X., Xu, G., Zhou, J., Huang, Q., Liu, Q., Hao, Q., and Ding, J. (2006). Structure of human MRG15 chromo domain and its binding to Lys36-methylated histone H3. Nucleic Acids Res 34, 6621–6628.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations