Science China Life Sciences

, Volume 61, Issue 5, pp 534–540 | Cite as

Mechanism of the reconstruction of aqueous outflow drainage

  • Chen Xin
  • Ning Tian
  • Meng Li
  • Huaizhou Wang
  • Ningli Wang


Glaucoma is the leading cause of irreversible blindness worldwide. The reconstruction of aqueous outflow drainage (RAOD) has recently been proposed to aid in restoring aqueous outflow drainage in primary open-angle glaucoma. However, the mechanism of RAOD remains to be fully understood. Based on literature review and research studies, the potential mechanisms of RAOD are the following: (i) Circumferential dilation of the Schlemm’s canal (SC) and surrounding collector channels. (ii) Instant formation of microcracks through RAOD procedures. (iii) Formation of more pores, and local detachment between the SC endothelium (SCE) and basement membrane. (iv) Activation of stem cells by constant mechanical stress caused by the tensional suture placed at the anterior part of the SC. (v) Reversal of trabecular meshwork (TM) herniation. (vi) Mobilization of the reserve of the aqueous drainage. (vii) Change of SCE phenotype. (viii) Mechanosensing and mechanotransducing of TM.


reconstruction of aqueous outflow drainage canaloplasty Schlemm’s canal trabecular meshwork 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by Beijing Scholar Program and Capital Clinical Characteristics Research Project (Z161100000516081).


  1. Abu-Hassan, D.W., Li, X., Ryan, E.I., Acott, T.S., and Kelley, M.J. (2015). Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells 33, 751–761.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Acott, T.S., Samples, J.R., Bradley, J.M.B., Bacon, D.R., Bylsma, S.S., and Van Buskirk, E.M. (1989). Trabecular repopulation by anterior trabecular meshwork cells after laser trabeculoplasty. Am J Ophthalmol 107, 1–6.CrossRefPubMedGoogle Scholar
  3. Aspelund, A., Tammela, T., Antila, S., Nurmi, H., Leppänen, V.M., Zarkada, G., Stanczuk, L., Francois, M., Mäkinen, T., Saharinen, P., Immonen, I., and Alitalo, K. (2014). The Schlemm’s canal is a VEGF-C/VEGFR-3- responsive lymphatic-like vessel. J Clin Invest 124, 3975–3986.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Battista, S.A., Lu, Z., Hofmann, S., Freddo, T., Overby, D.R., and Gong, H. (2008). Reduction of the available area for aqueous humor outflow and increase in meshwork herniations into collector channels following acute IOP elevation in bovine eyes. Investig Ophthalmol Visual Sci 49, 5346–5352.CrossRefGoogle Scholar
  5. Braakman, S.T., Pedrigi, R.M., Read, A.T., Smith, J.A.E., Stamer, W.D., Ethier, C.R., and Overby, D.R. (2014). Biomechanical strain as a trigger for pore formation in Schlemm’s canal endothelial cells. Exp Eye Res 127, 224–235.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Braakman, S.T., Read, A.T., Chan, D.W.H., Ethier, C.R., and Overby, D.R. (2015). Colocalization of outflow segmentation and pores along the inner wall of Schlemm’s canal. Exp Eye Res 130, 87–96.CrossRefPubMedGoogle Scholar
  7. Braunger, B.M., Ademoglu, B., Koschade, S.E., Fuchshofer, R., Gabelt, B.T., Kiland, J.A., Hennes-Beann, E.A., Brunner, K.G., Kaufman, P.L., and Tamm, E.R. (2014). Identification of adult stem cells in Schwalbe’s line region of the primate eye. Investig Ophthalmol Visual Sci 55, 7499–7507.CrossRefGoogle Scholar
  8. Carreon, T.A., Edwards, G., Wang, H., and Bhattacharya, S.K. (2017). Segmental outflow of aqueous humor in mouse and human. Exp Eye Res 158, 59–66.CrossRefPubMedGoogle Scholar
  9. Cha, E.D.K., Xu, J., Gong, L., and Gong, H. (2016). Variations in active outflow along the trabecular outflow pathway. Exp Eye Res 146, 354–360.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chang, J.Y.H., Folz, S.J., Laryea, S.N., and Overby, D.R. (2014). Multiscale analysis of segmental outflow patterns in human trabecular meshwork with changing intraocular pressure. J Ocular Pharmacol Ther 30, 213–223.CrossRefGoogle Scholar
  11. Doucette, L.P., Rasnitsyn, A., Seifi, M., and Walter, M.A. (2015). The interactions of genes, age, and environment in glaucoma pathogenesis. Survey Ophthalmol 60, 310–326.CrossRefGoogle Scholar
  12. Du, Y., Roh, D.S., Mann, M.M., Funderburgh, M.L., Funderburgh, J.L., and Schuman, J.S. (2012). Multipotent stem cells from trabecular meshwork become phagocytic TM cells. Investig Ophthalmol Visual Sci 53, 1566–1575.CrossRefGoogle Scholar
  13. Friedman, D.S., Wolfs, R.C.W., O’Colmain, B.J., Klein, B.E., Taylor, H.R., West, S., Leske, M.C., Mitchell, P., Congdon, N., Kempen, J., and Kempen, J. (2004). Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol 122, 532–538.CrossRefPubMedGoogle Scholar
  14. Fuchshofer, R., and Tamm, E.R. (2012). The role of TGF-β in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res 347, 279–290.CrossRefPubMedGoogle Scholar
  15. Goel, M., Sienkiewicz, A.E., Picciani, R., Wang, J., Lee, R.K., and Bhattacharya, S.K. (2012). Cochlin, intraocular pressure regulation and mechanosensing. PLoS ONE 7, e34309.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Grieshaber, M.C., Pienaar, A., Olivier, J., and Stegmann, R. (2010). Clinical evaluation of the aqueous outflow system in primary open-angle glaucoma for canaloplasty. Investig Ophthalmol Visual Sci 51, 1498–1504.CrossRefGoogle Scholar
  17. Hann, C.R., Bentley, M.D., Vercnocke, A., Ritman, E.L., and Fautsch, M.P. (2011). Imaging the aqueous humor outflow pathway in human eyes by three-dimensional micro-computed tomography (3D micro-CT). Exp Eye Res 92, 104–111.CrossRefPubMedGoogle Scholar
  18. Hann, C.R., Vercnocke, A.J., Bentley, M.D., Jorgensen, S.M., and Fautsch, M.P. (2014). Anatomic changes in Schlemm’s canal and collector channels in normal and primary open-angle glaucoma eyes using low and high perfusion pressures. Investig Ophthalmol Visual Sci 55, 5834–5841.CrossRefGoogle Scholar
  19. He, J., Zou, H., Tong, X., Zhang, S., Zhao, R., Zhang, Y., Zhou, W., Tang, W., and Ge, L. (2014). Prevalence of primary glaucoma among adults aged 50 years or above population in Huamu community: a cross-sectional survey in Shanghai, 2011 (in Chinese). Chin J Ophthalmol 50, 349–354.Google Scholar
  20. Hou, R., Zhang, Z., Yang, D., Wang, H., Chen, W., Li, Z., Sang, J., Liu, S., Cao, Y., Xie, X., Ren, R., Zhang, Y., Sabel, B.A., and Wang, N. (2016). Pressure balance and imbalance in the optic nerve chamber: The Beijing Intracranial and Intraocular Pressure (iCOP) Study. Sci China Life Sci 59, 495–503.CrossRefPubMedGoogle Scholar
  21. Irshad, F.A., Mayfield, M.S., Zurakowski, D., and Ayyala, R.S. (2010). Variation in Schlemm’s canal diameter and location by ultrasound biomicroscopy. Ophthalmology 117, 916–920.CrossRefPubMedGoogle Scholar
  22. Johnson, M., Shapiro, A., Ethier, C.R., and Kamm, R.D. (1992). Modulation of outflow resistance by the pores of the inner wall endothelium. Investig Ophthalmol Visual Sci 33, 1670–1675.Google Scholar
  23. Johnstone, M.A., and Grant, W.M. (1973). Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. Am J Ophthalmol 75, 365–383.CrossRefPubMedGoogle Scholar
  24. Jonas, J.B., Wang, N., Yang, D., Ritch, R., and Panda-Jonas, S. (2015). Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retinal Eye Res 46, 67–83.CrossRefGoogle Scholar
  25. Keller, K.E., Bradley, J.M., Kelley, M.J., and Acott, T.S. (2008). Effects of modifiers of glycosaminoglycan biosynthesis on outflow facility in perfusion culture. Investig Ophthalmol Visual Sci 49, 2495–2505.CrossRefGoogle Scholar
  26. Kelley, M.J., Rose, A.Y., Keller, K.E., Hessle, H., Samples, J.R., and Acott, T.S. (2009). Stem cells in the trabecular meshwork: present and future promises. Exp Eye Res 88, 747–751.CrossRefPubMedGoogle Scholar
  27. Kizhatil, K., Ryan, M., Marchant, J.K., Henrich, S., and John, S.W.M. (2014). Schlemm’s canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLoS Biol 12, e1001912.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lepple-Wienhues, A., Stahl, F., and Wiederholt, M. (1991). Differential smooth muscle-like contractile properties of trabecular meshwork and ciliary muscle. Exp Eye Res 53, 33–38.CrossRefPubMedGoogle Scholar
  29. Lewis, R.A., von Wolff, K., Tetz, M., Koerber, N., Kearney, J.R., Shingleton, B.J., and Samuelson, T.W. (2009). Canaloplasty: circumferential viscodilation and tensioning of Schlemm canal using a flexible microcatheter for the treatment of open-angle glaucoma in adults. J Cataract Refract Surg 35, 814–824.CrossRefPubMedGoogle Scholar
  30. McGowan, S.L., Edelhauser, H.F., Pfister, R.R., and Whikehart, D.R. (2007). Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis 13, 1984–2000.PubMedGoogle Scholar
  31. Morgan, J.T., Raghunathan, V.K., Chang, Y.R., Murphy, C.J., and Russell, P. (2015). The intrinsic stiffness of human trabecular meshwork cells increases with senescence. Oncotarget 6, 15362–15374.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nemeth, K., and Karpati, S. (2014). Identifying the stem cell. J Invest Dermatol 134, 1–5.CrossRefPubMedGoogle Scholar
  33. Pan, C.W., Zhao, C.H., Yu, M.B., Cun, Q., Chen, Q., Shen, W., Li, J., Xu, J.G., Yuan, Y., and Zhong, H. (2016). Prevalence, types and awareness of glaucoma in a multi-ethnic population in rural China: the Yunnan Minority Eye Study. Ophthalmic Physiol Opt 36, 664–670.CrossRefPubMedGoogle Scholar
  34. Park, D.Y., Lee, J., Park, I., Choi, D., Lee, S., Song, S., Hwang, Y., Hong, K.Y., Nakaoka, Y., Makinen, T., Kim, P., Alitalo, K., Hong, Y.K., and Koh, G.Y. (2014). Lymphatic regulator PROX1 determines Schlemm’s canal integrity and identity. J Clin Invest 124, 3960–3974.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Quigley, H.A., and Broman, A.T. (2006). The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90, 262–267.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Raviola, G. (1982). Schwalbe line’s cells: a new cell type in the trabecular meshwork of Macaca mulatta. Investig Ophthalmol Visual Sci 22, 45–56.Google Scholar
  37. Roubeix, C., Godefroy, D., Mias, C., Sapienza, A., Riancho, L., Degardin, J., Fradot, V., Ivkovic, I., Picaud, S., Sennlaub, F., Denoyer, A., Rostene, W., Sahel, J.A., Parsadaniantz, S.M., Brignole-Baudouin, F., and Baudouin, C. (2015). Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Res Ther 6, 177.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rudnicka, A.R., Mt-Isa, S., Owen, C.G., Cook, D.G., and Ashby, D. (2006). Variations in primary open-angle glaucoma prevalence by age, gender, and race: a Bayesian meta-analysis. Investig Ophthalmol Visual Sci 47, 4254–4261.CrossRefGoogle Scholar
  39. Sang, J., Jia, L., Zhao, B., Wang, H., Zhang, N., and Wang, N. (2016). Association of three single nucleotide polymorphisms at the SIX1-SIX6 locus with primary open angle glaucoma in the Chinese population. Sci China Life Sci 59, 694–699.CrossRefPubMedGoogle Scholar
  40. Smit, B.A., and Johnstone, M.A. (2002). Effects of viscoelastic injection into Schlemm’s canal in primate and human eyes. Ophthalmology 109, 786–792.CrossRefPubMedGoogle Scholar
  41. Stamer, W.D., and Acott, T.S. (2012). Current understanding of conventional outflow dysfunction in glaucoma. Curr Opin Ophthalmol 23, 135–143.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Swain, D.L., Ho, J., Lai, J., and Gong, H. (2015). Shorter scleral spur in eyes with primary open-angle glaucoma. Investig Ophthalmol Visual Sci 56, 1638–1648.CrossRefGoogle Scholar
  43. Thomasy, S.M., Morgan, J.T., Wood, J.A., Murphy, C.J., and Russell, P.(2013). Substratum stiffness and latrunculin B modulate the gene expression of the mechanotransducers YAP and TAZ in human trabecular meshwork cells. Exp Eye Res 113, 66–73.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tran, V.T., Ho, P.T., Cabrera, L., Torres, J.E., and Bhattacharya, S.K. (2014). Mechanotransduction channels of the trabecular meshwork. Curr Eye Res 39, 291–303.CrossRefPubMedGoogle Scholar
  45. Vranka, J.A., Bradley, J.M., Yang, Y.F., Keller, K.E., and Acott, T.S. (2015a). Mapping molecular differences and extracellular matrix gene expression in segmental outflow pathways of the human ocular trabecular meshwork. PLoS ONE 10, e0122483.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vranka, J.A., Kelley, M.J., Acott, T.S., and Keller, K.E. (2015b). Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res 133, 112–125.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wang, N., Wang, H., Hong, J., Zhao, B., Cao, Y., Sang, J., and Yang, D. (2014). The comparison of short-term outcome between aqueous drainage pathway reconstruction surgery versus canaloplasty for open angle glaucoma (in Chinese). Chin J Ophthalmol 50, 338–342.Google Scholar
  48. Wiederholt, M., Thieme, H., and Stumpff, F. (2000). The regulation of trabecular meshwork and ciliary muscle contractility. Prog Retinal Eye Res 19, 271–295.CrossRefGoogle Scholar
  49. Xin, C., Chen, X., Shi, Y., Li, M., Wang, H., and Wang, N. (2016a). One-year interim comparison of canaloplasty in primary open-angle glaucoma following failed filtering surgery with primary canaloplasty. Br J Ophthalmol 100, 1692–1696.CrossRefPubMedGoogle Scholar
  50. Xin, C., Chen, X., Shi, Y., Wang, H., and Wang, N. (2016b). Modified canaloplasty. J Glaucoma 25, 798–801.CrossRefPubMedGoogle Scholar
  51. Zhang, Y., Toris, C.B., Liu, Y., Ye, W., and Gong, H. (2009). Morphological and hydrodynamic correlates in monkey eyes with laser induced glaucoma. Exp Eye Res 89, 748–756.CrossRefPubMedGoogle Scholar
  52. Zhong, H., Li, J., Li, C., Wei, T., Cha, X., Cai, N., Luo, T., Yu, M., and Yuan, Y. (2012). The prevalence of glaucoma in adult rural Chinese populations of the Bai nationality in Dali: the Yunnan Minority Eye Study. Investig Ophthalmol Visual Sci 53, 3221–3225.CrossRefGoogle Scholar
  53. Zhu, W., Gramlich, O.W., Laboissonniere, L., Jain, A., Sheffield, V.C., Trimarchi, J.M., Tucker, B.A., and Kuehn, M.H. (2016). Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo. Proc Natl Acad Sci USA 113, E3492–E3500.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhu, W., Jain, A., Gramlich, O.W., Tucker, B.A., Sheffield, V.C., and Kuehn, M.H. (2017). Restoration of aqueous humor outflow following transplantation of iPSC-derived trabecular meshwork cells in a transgenic mouse model of glaucoma. Investig Ophthalmol Visual Sci 58, 2054–2062.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Chen Xin
    • 1
    • 2
    • 3
  • Ning Tian
    • 1
    • 2
  • Meng Li
    • 1
    • 2
  • Huaizhou Wang
    • 1
    • 2
  • Ningli Wang
    • 1
    • 2
  1. 1.Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
  2. 2.Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
  3. 3.Department of ophthalmology, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina

Personalised recommendations