Advertisement

Science China Life Sciences

, Volume 61, Issue 5, pp 541–549 | Cite as

miR-137 inhibits melanoma cell proliferation through downregulation of GLO1

  • Na Lv
  • Shuai Hao
  • Chonglin Luo
  • Alia Abukiwan
  • Ying Hao
  • Fei Gai
  • Weiwei Huang
  • Lingyun Huang
  • Xueyuan Xiao
  • Stefan B. Eichmüller
  • Dacheng He
Research Paper

Abstract

Late-stage melanoma is refractory to current therapies. MicroRNAs (miRNAs) can modulate many physiological and pathological processes of melanoma. Studies have demonstrated that miR-137 acts as a tumor suppressor by inhibiting the proliferation of melanoma cells through targeting multiple mRNAs. The glyoxalase system member glyoxalase 1 (GLO1) is the principal scavenging enzyme of methylglyoxal (MG), a toxic byproduct of glycolysis. Using 35S in vivo/vitro labelling analysis for dynamic proteomics (SiLAD), we found that miR-137 downregulated the expression of GLO1 in melanoma cells. Bioinformatics analysis predicted that GLO1 is a direct target of miR-137. This was validated by dual luciferase reporter assay. Quantitative RT-PCR (qRT-PCR) and western blot analysis indicated that miR-137 could decrease endogenous GLO1 expression. Furthermore, siRNA targeting of GLO1 mimicked inhibition of melanoma cell proliferation caused by miR-137 overexpression. Re-expression of GLO1 was able to restore miR-137-mediated suppression of melanoma cell proliferation. Therefore, these results suggest that miR-137 inhibits the proliferation of melanoma cells by targeting GLO1.

Keywords

melanoma miR-137 SiLAD GLO1 cell proliferation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Special Funds for Major State Basic Research of China (2011CB915504), Coalition for National Science Funding (31171371 (2011–2015) to Dacheng He), and the German Cancer Aid (Melanoma Research Network) to Dr. Stefan B. Eichmüller.

References

  1. Althoff, K., Beckers, A., Odersky, A., Mestdagh, P., Köster, J., Bray, I.M., Bryan, K., Vandesompele, J., Speleman, F., Stallings, R.L., Schramm, A., Eggert, A., Sprüssel, A., and Schulte, J.H. (2013). MiR-137 functions as a tumor suppressor in neuroblastoma by downregulating KDM1A. Int J Cancer 133, 1064–1073.CrossRefPubMedGoogle Scholar
  2. Bair Iii, W.B., Cabello, C.M., Uchida, K., Bause, A.S., and Wondrak, G.T. (2010). GLO1 overexpression in human malignant melanoma. Melanoma Res 20, 85–96.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bemis, L.T., Chen, R., Amato, C.M., Classen, E.H., Robinson, S.E., Coffey, D.G., Erickson, P.F., Shellman, Y.G., and Robinson, W.A. (2008). MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 68, 1362–1368.CrossRefPubMedGoogle Scholar
  4. Chang, X., Zhang, H., Lian, S., and Zhu, W. (2016). miR-137 suppresses tumor growth of malignant melanoma by targeting aurora kinase A. Biochem Biophys Res Commun 475, 251–256.CrossRefPubMedGoogle Scholar
  5. Chen, C.C., Liu, T.Y., Huang, S.P., Ho, C.T., and Huang, T.C. (2015). Differentiation and apoptosis induction by lovastatin and ?-tocotrienol in HL-60 cells via Ras/ERK/NF-?B and Ras/Akt/NF-?B signaling dependent down-regulation of glyoxalase 1 and HMG-CoA reductase. Cell Signal 27, 2182–2190.CrossRefPubMedGoogle Scholar
  6. Chen, D.H., Xu, W.D., Bales, E., Colmenares, C., Conacci-Sorrell, M., Ishii, S., Stavnezer, E., Campisi, J., Fisher, D.E., Ben-Ze’ev, A., and Medrano, E.E. (2003). SKI activates Wnt/beta-catenin signaling in human melanoma. Cancer Res 63, 6626–6634.PubMedGoogle Scholar
  7. Chen, Q., Chen, X., Zhang, M., Fan, Q., Luo, S., and Cao, X. (2011a). miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42. Dig Dis Sci 56, 2009–2016.CrossRefPubMedGoogle Scholar
  8. Chen, X., Wang, J., Shen, H., Lu, J., Li, C., Hu, D.N., Dong, X.D., Yan, D., and Tu, L.L. (2011b). Epigenetics, microRNAs, and carcinogenesis: functional role of microRNA-137 in uveal melanoma. Invest Ophthalmol Vis Sci 52, 1193–1199.CrossRefPubMedGoogle Scholar
  9. Cheng, J., Zhou, L., Xie, Q.F., Xie, H.Y., Wei, X.Y., Gao, F., Xing, C.Y., Xu, X., Li, L.J., and Zheng, S.S. (2010). The impact of miR-34a on protein output in hepatocellular carcinoma HepG2 cells. Proteomics 10, 1557–1572.CrossRefPubMedGoogle Scholar
  10. Deng, Y., Deng, H., Bi, F., Liu, J., Bemis, L.T., Norris, D., Wang, X.J., and Zhang, Q. (2011). MicroRNA-137 targets carboxyl-terminal binding protein 1 in melanoma cell lines. Int J Biol Sci 7, 133–137.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fabian, M.R., Sonenberg, N., and Filipowicz, W. (2010). Regulation of mRNA Translation and Stability by microRNAs. Annu Rev Biochem 79, 351–379.CrossRefPubMedGoogle Scholar
  12. Gatenby, R.A., and Gillies, R.J. (2004). Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4, 891–899.CrossRefPubMedGoogle Scholar
  13. Gray-Schopfer, V., Wellbrock, C., and Marais, R. (2007). Melanoma biology and new targeted therapy. Nature 445, 851–857.CrossRefPubMedGoogle Scholar
  14. Guo, J., Xia, B., Meng, F., and Lou, G. (2013). miR-137 suppresses cell growth in ovarian cancer by targeting AEG-1. Biochem Biophys Res Commun 441, 357–363.CrossRefPubMedGoogle Scholar
  15. Hao, S., Luo, C., Abukiwan, A., Wang, G., He, J., Huang, L., Weber, C.E.M., Lv, N., Xiao, X., Eichmüller, S.B., and He, D. (2015). miR-137 inhibits proliferation of melanoma cells by targeting PAK2. Exp Dermatol 24, 947–952.CrossRefPubMedGoogle Scholar
  16. He, J., Hao, S., Zhang, H., Guo, F., Huang, L., Xiao, X., and He, D. (2015). Chronological protein synthesis in regenerating rat liver. Electrophoresis 36, 1622–1632.CrossRefPubMedGoogle Scholar
  17. Hu, X., Yang, X., He, Q., Chen, Q., and Yu, L. (2014). Glyoxalase 1 is up-regulated in hepatocellular carcinoma and is essential for HCC cell proliferation. Biotechnol Lett 36, 257–263.CrossRefPubMedGoogle Scholar
  18. Li, P., Ma, L., Zhang, Y., Ji, F., and Jin, F. (2014). MicroRNA-137 down-regulates KIT and inhibits small cell lung cancer cell proliferation. Biomed Pharmacother 68, 7–12.CrossRefPubMedGoogle Scholar
  19. Liu, M., Lang, N., Qiu, M., Xu, F., Li, Q., Tang, Q., Chen, J., Chen, X., Zhang, S., Liu, Z., Zhou, J., Zhu, Y., Deng, Y., Zheng, Y., and Bi, F. (2011). miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int J Cancer 128, 1269–1279.CrossRefPubMedGoogle Scholar
  20. Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R., and Golub, T.R. (2005). MicroRNA expression profiles classify human cancers. Nature 435, 834–838.CrossRefPubMedGoogle Scholar
  21. Lu, Z.J., Liu, S.Y., Yao, Y.Q., Zhou, Y.J., Zhang, S., Dai, L., Tian, H.W., Zhou, Y., Deng, H.X., Yang, J.L., and Luo, F. (2011). The effect of miR-7 on behavior and global protein expression in glioma cell lines. Electrophoresis 32, 3612–3620.CrossRefPubMedGoogle Scholar
  22. Luo, C., Tetteh, P.W., Merz, P.R., Dickes, E., Abukiwan, A., Hotz-Wagenblatt, A., Holland-Cunz, S., Sinnberg, T., Schittek, B., Schadendorf, D., Diederichs, S., and Eichmüller, S.B. (2013). miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J Invest Dermatol 133, 768–775.CrossRefPubMedGoogle Scholar
  23. Rabbani, N., and Thornalley, P.J. (2012). Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 42, 1133–1142.CrossRefPubMedGoogle Scholar
  24. Ryan, B.M., Robles, A.I., and Harris, C.C. (2010). Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10, 389–402.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Segura, M.F., Hanniford, D., Menendez, S., Reavie, L., Zou, X., Alvarez-Diaz, S., Zakrzewski, J., Blochin, E., Rose, A., Bogunovic, D., Polsky, D., Wei, J., Lee, P., Belitskaya-Levy, I., Bhardwaj, N., Osman, I., and Hernando, E. (2009). Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA 106, 1814–1819.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sun, G., Cao, Y., Shi, L., Sun, L., Wang, Y., Chen, C., Wan, Z., Fu, L., and You, Y. (2013). Overexpressed miRNA-137 inhibits human glioma cells growth by targeting Rac1. Cancer Biother Radiopharm 28, 327–334.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Thornalley, P.J. (2008). Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol Drug Interact 23, 125–150.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Tsao, H., Chin, L., Garraway, L.A., and Fisher, D.E. (2012). Melanoma: from mutations to medicine. Genes Dev 26, 1131–1155.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ventura, A., and Jacks, T. (2009). MicroRNAs and cancer: short RNAs go a long way. Cell 136, 586–591.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Xiu, Y., Liu, Z., Xia, S., Jin, C., Yin, H., Zhao, W., and Wu, Q. (2014). MicroRNA-137 upregulation increases bladder cancer cell proliferation and invasion by targeting PAQR3. PLoS ONE 9, e109734.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Xu, J.F., Huang, Z.Y., Lin, L., Fu, M.Q., Gao, Y.H., Shen, Y.L., Zou, Y.Z., Sun, A.J., Qian, J.Y., and Ge, J.B. (2014). miR-210 over-expression enhances mesenchymal stem cell survival in an oxidative stress environment through antioxidation and c-Met pathway activation. Sci China Life Sci 57, 989–997.CrossRefPubMedGoogle Scholar
  32. Zhang, J., Xiao, X.J., and Liu, J. (2015). The role of circulating miRNAs in multiple myeloma. Sci China Life Sci 58, 1262–1269.CrossRefPubMedGoogle Scholar
  33. Zhang, Z., Chen, J., Guo, F., He, L., Wu, Y., Zeng, C., Xiao, X., and He, D. (2008). A high-temporal resolution technology for dynamic proteomic analysis based on 35S labeling. PLoS ONE 3, e2991.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zhu, S., Si, M.L., Wu, H., and Mo, Y.Y. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282, 14328–14336.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Na Lv
    • 1
  • Shuai Hao
    • 2
  • Chonglin Luo
    • 3
  • Alia Abukiwan
    • 4
  • Ying Hao
    • 5
  • Fei Gai
    • 1
  • Weiwei Huang
    • 1
  • Lingyun Huang
    • 1
  • Xueyuan Xiao
    • 1
  • Stefan B. Eichmüller
    • 4
  • Dacheng He
    • 1
  1. 1.Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, Universities of the Confederated Institute for ProteomicsBeijing Normal UniversityBeijingChina
  2. 2.Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
  3. 3.Gene & Care Health Technologies, Co., Ltd.ShanghaiChina
  4. 4.GMP & T Cell Therapy UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
  5. 5.College of SportsNorthwest Normal UniversityLanzhouChina

Personalised recommendations