Advertisement

Science China Life Sciences

, Volume 60, Issue 2, pp 158–167 | Cite as

TLR3 activation induces S100A7 to regulate keratinocyte differentiation after skin injury

Open Access
Research Paper

Abstract

Human S100A7 (psoriasin) is highly expressed in psoriasis and other inflammatory diseases; however, the function of S100A7 in wound repair remains largely unknown. Here we demonstrated that skin injury increased the expression of S100A7. Damaged cells from wounded skin induced the expression of S100A7 via the activation of Toll-like receptor 3 (TLR3) followed by the activation of p38 MAPK. S100A7, in turn, acted on keratinocytes to induce the expression of terminal differentiation marker gene loricrin through the activation of p38 MAPK and caspase-1. The differentiation of keratinocytes induced by S100A7 resulted in skin stratification, thus efficiently promoting wound closure. Taken together, our results demonstrate that the activation of TLR3 accelerates wound closure via the induction of S100A7 to induce keratinocyte differentiation. These findings also provide new insights into the development of different forms of treatment with skin wounds.

Keywords

TLR3 S100A7 caspase-1 keratinocyte differentiation wound closure 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31170867, 31470878, 31222021, 81202327), the Science and Technology Commission of Shanghai Municipality (13JC1402301, 11DZ2260300), Shanghai Education Commission (13SG25), and Henry Fok Educational Foundation (141017).

Supplementary material

11427_2016_27_MOESM1_ESM.docx (20 kb)
Supplementary material, approximately 20 KB.

References

  1. Chen, L., Arbieva, Z.H., Guo, S., Marucha, P.T., Mustoe, T.A., and Di Pietro, L.A. (2010). Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics 11, 471.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chen, L., Guo, S., Ranzer, M.J., and DiPietro, L.A. (2013). Toll-like receptor 4 has an essential role in early skin wound healing. J Invest Dermatol 133, 258–267.CrossRefPubMedGoogle Scholar
  3. Dasu, M.R., and Rivkah Isseroff, R. (2012). Toll-like receptors in wound healing: location, accessibility, and timing. J Invest Dermatol 132, 1955–1958.CrossRefPubMedGoogle Scholar
  4. Dasu, M.R., Thangappan, R.K., Bourgette, A., DiPietro, L.A., Isseroff, R., and Jialal, I. (2010). TLR2 expression and signaling-dependent inflammation impair wound healing in diabetic mice. Lab Invest 90, 1628–1636.CrossRefPubMedGoogle Scholar
  5. Deiters, U., Barsig, J., Tawil, B., and Muhlradt, P.F. (2004). The macrophage-activating lipopeptide-2 accelerates wound healing in diabetic mice. Exp Dermatol 13, 731–739.CrossRefPubMedGoogle Scholar
  6. Eckert, R.L., Broome, A.M., Ruse, M., Robinson, N., Ryan, D., and Lee, K. (2004). S100 proteins in the epidermis. J Invest Dermatol 123, 23–33.CrossRefPubMedGoogle Scholar
  7. Eckert, R.L., Efimova, T., Dashti, S.R., Balasubramanian, S., Deucher, A., Crish, J.F., Sturniolo, M., and Bone, F. (2002). Keratinocyte survival, differentiation, and death: many roads lead to mitogen-activated protein kinase. J Invest Dermatol Sympos Proc 7, 36–40.CrossRefGoogle Scholar
  8. Eckhart, L., Declercq, W., Ban, J., Rendl, M., Lengauer, B., Mayer, C., Lippens, S., Vandenabeele, P., and Tschachler, E. (2000). Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J Invest Dermatol 115, 1148–1151.CrossRefPubMedGoogle Scholar
  9. Efimova, T., Broome, A.M., and Eckert, R.L. (2003). A regulatory role for p38 MAPK in keratinocyte differentiation: evidence for p38 -ERK1/2 complex formation. J Biol Chem 278, 34277–34285.CrossRefPubMedGoogle Scholar
  10. Gurtner, G.C., Werner, S., Barrandon, Y., and Longaker, M.T. (2008). Wound repair and regeneration. Nature 453, 314–321.CrossRefPubMedGoogle Scholar
  11. Hattori, F., Kiatsurayanon, C., Okumura, K., Ogawa, H., Ikeda, S., Okamoto, K., and Niyonsaba, F. (2014). The antimicrobial protein S100A7/psoriasin enhances the expression of keratinocyte differentiation markers and strengthens the skin’s tight junction barrier. Br J Dermatol 171, 742–753.CrossRefPubMedGoogle Scholar
  12. Hoffmann, H.J., Olsen, E., Etzerodt, M., Madsen, P., Thøgersen, H.C., Kruse, T., and Celis, J.E. (1994). Psoriasin binds calcium and is upregulated by calcium to levels that resemble those observed in normal skin. J Invest Dermatol 103, 370–375.CrossRefPubMedGoogle Scholar
  13. Ivanova, I.A., and Dagnino, L. (2007). Activation of p38- and CRM1-dependent nuclear export promotes E2F1 degradation during keratinocyte differentiation. Oncogene 26, 1147–1154.CrossRefPubMedGoogle Scholar
  14. Jiang, D., Liang, J., Fan, J., Yu, S., Chen, S., Luo, Y., Prestwich, G.D., Mascarenhas, M.M., Garg, H.G., Quinn, D.A., Homer, R.J., Goldstein, D.R., Bucala, R., Lee, P.J., Medzhitov, R., and Noble, P.W. (2005). Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11, 1173–1179.CrossRefPubMedGoogle Scholar
  15. Jost, M., Huggett, T.M., Kari, C., and Rodeck, U. (2001). Matrix-independent survival of human keratinocytes through an EGF receptor/MAPKkinase- dependent pathway. Mol Biol Cell 12, 1519–1527.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lai, Y., Di Nardo, A., Nakatsuji, T., Leichtle, A., Yang, Y., Cogen, A.L., Wu, Z.R., Hooper, L.V., Schmidt, R.R., von Aulock, S., Radek, K.A., Huang, C.M., Ryan, A.F., and Gallo, R.L. (2009). Commensal bacteria regulate Toll-like receptor 3—dependent inflammation after skin injury. Nat Med 15, 1377–1382.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lai, Y., Li, D., Li, C., Muehleisen, B., Radek, K.A., Park, H.J., Jiang, Z., Li, Z., Lei, H., Quan, Y., Zhang, T., Wu, Y., Kotol, P., Morizane, S., Hata, T.R., Iwatsuki, K., Tang, C., and Gallo, R.L. (2012). The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity 37, 74–84.CrossRefPubMedGoogle Scholar
  18. Laplante, A.F., Germain, L., Auger, F.A., and Moulin, V. (2001). Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to long-standing questions. FASEB J 15, 2377–2389.CrossRefPubMedGoogle Scholar
  19. Larsen, P.H., Holm, T.H., and Owens, T. (2007). Toll-like receptors in brain development and homeostasis. Sci STKE 2007, pe47–pe47.CrossRefPubMedGoogle Scholar
  20. Lee, S.H., Jeong, S.K., and Ahn, S.K. (2006). An update of the defensive barrier function of skin. Yonsei Med J 47, 293–306.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li, M.R., Ti, D.D., Han, W.D., and Fu, X.B. (2014). Microenvironmentinduced myofibroblast-like conversion of engrafted keratinocytes. Sci China Life Sci 57, 209–220.CrossRefPubMedGoogle Scholar
  22. Lin, Q., Wang, L., Lin, Y., Liu, X., Ren, X., Wen, S., Du, X., Lu, T., Su, S.Y., Yang, X., Huang, W., Zhou, S., Wen, F., and Su, S.B. (2012). Tolllike receptor 3 ligand polyinosinic: polycytidylic acid promotes wound healing in human and murine skin. J Invest Dermatol 132, 2085–2092.CrossRefPubMedGoogle Scholar
  23. Martin, P. (1997). Wound healing—aiming for perfect skin regeneration. Science 276, 75–81.CrossRefPubMedGoogle Scholar
  24. Nakajima, K., Kanda, T., Takaishi, M., Shiga, T., Miyoshi, K., Nakajima, H., Kamijima, R., Tarutani, M., Benson, J.M., Elloso, M.M., Gutshall, L.L., Naso, M.F., Iwakura, Y., DiGiovanni, J., and Sano, S. (2011). Distinct roles of IL-23 and IL-17 in the development of psoriasis-like lesions in a mouse model. J Immunol 186, 4481–4489.CrossRefPubMedGoogle Scholar
  25. Nemes, Z., Marekov, L.N., and Steinert, P.M. (1999). Involucrin cross-linking by transglutaminase 1: binding to membranes directs residue specificity. J Biol Chem 274, 11013–11021.CrossRefPubMedGoogle Scholar
  26. Rakoff-Nahoum, S., and Medzhitov, R. (2008). Role of /oll-like receptors in tissue repair and tumorigenesis. Biochem Moscow 73, 555–561.CrossRefGoogle Scholar
  27. Scaffidi, P., Misteli, T., and Bianchi, M.E. (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195.CrossRefPubMedGoogle Scholar
  28. Epstein, F.H., Singer, A.J., and Clark, R.A.F. (1999). Cutaneous wound healing. N Engl J Med 341, 738–746.CrossRefGoogle Scholar
  29. Thorey, I.S., Roth, J., Regenbogen, J., Halle, J.P., Bittner, M., Vogl, T., Kaesler, S., Bugnon, P., Reitmaier, B., Durka, S., Graf, A., Wockner, M., Rieger, N., Konstantinow, A., Wolf, E., Goppelt, A., and Werner, S. (2001). The Ca2+-binding proteins S100A8 and S100A9 are encoded by novel injury-regulated genes. J Biol Chem 276, 35818–35825.CrossRefPubMedGoogle Scholar
  30. Tian, J., Avalos, A.M., Mao, S.Y., Chen, B., Senthil, K., Wu, H., Parroche, P., Drabic, S., Golenbock, D., Sirois, C., Hua, J., An, L.L., Audoly, L., La Rosa, G., Bierhaus, A., Naworth, P., Marshak-Rothstein, A., Crow, M.K., Fitzgerald, K.A., Latz, E., Kiener, P.A., and Coyle, A.J. (2007). Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8, 487–496.CrossRefPubMedGoogle Scholar
  31. Voss, A., Bode, G., Sopalla, C., Benedyk, M., Varga, G., Bö hm, M., Nacken, W., and Kerkhoff, C. (2011). Expression of S100A8/A9 in HaCaT keratinocytes alters the rate of cell proliferation and differentiation. FEBS Lett 585, 440–446.CrossRefPubMedGoogle Scholar
  32. Voss, A., Gescher, K., Hensel, A., Nacken, W., Zänker, K.S., and Kerkhoff, C. (2012). Double-stranded RNA induces S100 gene expression by a cycloheximide-sensitive factor. FEBS Lett 586, 196–203.CrossRefPubMedGoogle Scholar
  33. Watt, F.M. (1989). Terminal differentiation of epidermal keratinocytes. Curr Opin Cell Biol 1, 1107–1115.CrossRefPubMedGoogle Scholar
  34. Weil, M., Raff, M.C., and Braga, V.M.M. (1999). Caspase activation in the terminal differentiation of human epidermal keratinocytes. Curr Biol 9, 361–365.CrossRefPubMedGoogle Scholar
  35. Zouboulis, C.C., Voorhees, J.J., Orfanos, C.E., and Tavakkol, A. (1996). Topical all-trans retinoic acid (RA) induces an early, coordinated increase in RA-inducible skin-specific gene/psoriasin and cellular RA-binding protein II mRNA levels which precedes skin erythema. Arch Dermatol Res 288, 664–669.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Regulatory Biology, School of Life SciencesEast China Normal UniversityShanghaiChina

Personalised recommendations