Advertisement

Science China Life Sciences

, Volume 60, Issue 2, pp 178–188 | Cite as

Significant variations in alternative splicing patterns and expression profiles between human-mouse orthologs in early embryos

Open Access
Research Paper

Abstract

Human and mouse orthologs are expected to have similar biological functions; however, many discrepancies have also been reported. We systematically compared human and mouse orthologs in terms of alternative splicing patterns and expression profiles. Human-mouse orthologs are divergent in alternative splicing, as human orthologs could generally encode more isoforms than their mouse orthologs. In early embryos, exon skipping is far more common with human orthologs, whereas constitutive exons are more prevalent with mouse orthologs. This may correlate with divergence in expression of splicing regulators. Orthologous expression similarities are different in distinct embryonic stages, with the highest in morula. Expression differences for orthologous transcription factor genes could play an important role in orthologous expression discordance. We further detected largely orthologous divergence in differential expression between distinct embryonic stages. Collectively, our study uncovers significant orthologous divergence from multiple aspects, which may result in functional differences and dynamics between human-mouse orthologs during embryonic development.

Keywords

ortholog alternative splicing RNA-seq early embryo gene expression 

Notes

Acknowledgements

We would like to thank Li Zhang and Rong Cheng from East China Normal University for their helpful discussions. We are also grateful to the Supercomputer Center of East China Normal University. This work was supported by the China Human Proteomics Project (2014DFB30010), the National High Technology Research and Development Program of China (2015AA020104,), the National Natural Science Foundation of China (31071162), and the Graduate School of East China Normal University.

Supplementary material

11427_2015_348_MOESM1_ESM.doc (296 kb)
Significant variations in alternative splicing patterns and expression profiles between human-mouse orthologs in early embryos
11427_2015_348_MOESM2_ESM.xls (68 kb)
Extreme examples where human genes hold large number of isoforms (>=20) compare to mouse (<=5).
11427_2015_348_MOESM3_ESM.xls (42 kb)
Human and mouse orthologous splicing regulators.

References

  1. Angel, T.E., Aryal, U.K., Hengel, S.M., Baker, E.S., Kelly, R.T., Robinson, E.W., and Smith, R.D. (2012). Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 41, 3912–3928.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blair, J.E., and Hedges, S.B. (2005). Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 22, 2275–2284.CrossRefPubMedGoogle Scholar
  3. Chen, X., and Zhang, J. (2012). The ortholog conjecture is untestable by the current gene ontology but is supported by RNA sequencing data. PLoS Comput Biol 8, e1002784.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ciccarelli, F.D., Doerks, T., von Mering, C., Creevey, C.J., Snel, B., and Bork, P. (2006). Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287.CrossRefPubMedGoogle Scholar
  5. Dolinski, K., and Botstein, D. (2007). Orthology and functional conservation in eukaryotes. Annu Rev Genet 41, 465–507.CrossRefPubMedGoogle Scholar
  6. Domon, B., and Aebersold, R. (2006). Mass spectrometry and protein analysis. Science 312, 212–217.CrossRefPubMedGoogle Scholar
  7. Elso, C., Lu, X., Morrison, S., Tarver, A., Thompson, H., Thurkow, H., Yamada, N.A., and Stubbs, L. (2008). Germline translocations in mice: unique tools for analyzing gene function and long-distance regulatory mechanisms. J Natl Cancer Inst Monogr, 91–95.Google Scholar
  8. Flicek, P., Ahmed, I., Amode, M.R., Barrell, D., Beal, K., Brent, S., Carvalho-Silva, D., Clapham, P., Coates, G., Fairley, S., Fitzgerald, S., Gil, L., Garcia-Giron, C., Gordon, L., Hourlier, T., Hunt, S., Juettemann, T., Kahari, A.K., Keenan, S., Komorowska, M., Kulesha, E., Longden, I., Maurel, T., McLaren, W.M., Muffato, M., Nag, R., Overduin, B., Pignatelli, M., Pritchard, B., Pritchard, E., Riat, H.S., Ritchie, G.R., Ruffier, M., Schuster, M., Sheppard, D., Sobral, D., Taylor, K., Thormann, A., Trevanion, S., White, S., Wilder, S.P., Aken, B.L., Birney, E., Cunningham, F., Dunham, I., Harrow, J., Herrero, J., Hubbard, T.J., Johnson, N., Kinsella, R., Parker, A., Spudich, G., Yates, A., Zadissa, A., and Searle, S.M. (2013). Ensembl 2013. Nucleic Acids Res 41, D48–55.CrossRefPubMedGoogle Scholar
  9. Gabaldon, T., and Koonin, E.V. (2013). Functional and evolutionary implications of gene orthology. Nat Rev Genet 14, 360–366.CrossRefPubMedGoogle Scholar
  10. Gharib, W.H., and Robinson-Rechavi, M. (2011). When orthologs diverge between human and mouse. Brief Bioinform 12, 436–441.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ginis, I., Luo, Y.Q., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Hoke, A., Carpenter, M.K., Itskovitz-Eldor, J., and Rao, M.S. (2004). Differences between human and mouse embryonic stem cells. Dev Biol 269, 360–380.CrossRefPubMedGoogle Scholar
  12. Grosso, A.R., Gomes, A.Q., Barbosa-Morais, N.L., Caldeira, S., Thorne, N.P., Grech, G., von Lindern, M., and Carmo-Fonseca, M. (2008). Tissue-specific splicing factor gene expression signatures. Nucleic Acids Res 36, 4823–4832.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44–57.CrossRefPubMedGoogle Scholar
  14. Kanamori, M., Konno, H., Osato, N., Kawai, J., Hayashizaki, Y., and Suzuki, H. (2004). A genome-wide and nonredundant mouse transcription factor database. Biochem Biophys Res Commun 322, 787–793.CrossRefPubMedGoogle Scholar
  15. Keren, H., Lev-Maor, G., and Ast, G. (2010). Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11, 345–355.CrossRefPubMedGoogle Scholar
  16. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14, R36.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kinsella, R.J., Kahari, A., Haider, S., Zamora, J., Proctor, G., Spudich, G., Almeida-King, J., Staines, D., Derwent, P., Kerhornou, A., Kersey, P., and Flicek, P. (2011). Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford) 2011, bar030.CrossRefGoogle Scholar
  18. Koonin, E.V. (2005). Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39, 309–338.CrossRefPubMedGoogle Scholar
  19. Liao, B.Y., and Zhang, J. (2006). Evolutionary conservation of expression profiles between human and mouse orthologous genes. Mol Biol Evol 23, 530–540.CrossRefPubMedGoogle Scholar
  20. Liu, H., Chen, C.H., Espinoza-Lewis, R.A., Jiao, Z., Sheu, I., Hu, X., Lin, M., Zhang, Y., and Chen, Y. (2011). Functional redundancy between human SHOX and mouse Shox2 genes in the regulation of sinoatrial node formation and pacemaking function. J Biol Chem 286, 17029–17038.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Liu, Z., Miner, J.J., Yago, T., Yao, L., Lupu, F., Xia, L., and McEver, R.P. (2010). Differential regulation of human and murine P-selectin expression and function in vivo. J Exp Med 207, 2975–2987.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., and Gilad, Y. (2008). RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18, 1509–1517.CrossRefPubMedPubMedCentralGoogle Scholar
  23. McGettigan, P.A. (2013). Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 17, 4–11.CrossRefPubMedGoogle Scholar
  24. Mouse Genome Sequencing, C., Waterston, R.H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J.F., Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P., Antonarakis, S.E., Attwood, J., Baertsch, R., Bailey, J., Barlow, K., Beck, S., Berry, E., Birren, B., Bloom, T., Bork, P., Botcherby, M., Bray, N., Brent, M.R., Brown, D.G., Brown, S.D., Bult, C., Burton, J., Butler, J., Campbell, R.D., Carninci, P., Cawley, S., Chiaromonte, F., Chinwalla, A.T., Church, D.M., Clamp, M., Clee, C., Collins, F.S., Cook, L.L., Copley, R.R., Coulson, A., Couronne, O., Cuff, J., Curwen, V., Cutts, T., Daly, M., David, R., Davies, J., Delehaunty, K.D., Deri, J., Dermitzakis, E.T., Dewey, C., Dickens, N.J., Diekhans, M., Dodge, S., Dubchak, I., Dunn, D.M., Eddy, S.R., Elnitski, L., Emes, R.D., Eswara, P., Eyras, E., Felsenfeld, A., Fewell, G.A., Flicek, P., Foley, K., Frankel, W.N., Fulton, L.A., Fulton, R.S., Furey, T.S., Gage, D., Gibbs, R.A., Glusman, G., Gnerre, S., Goldman, N., Goodstadt, L., Grafham, D., Graves, T.A., Green, E.D., Gregory, S., Guigo, R., Guyer, M., Hardison, R.C., Haussler, D., Hayashizaki, Y., Hillier, L.W., Hinrichs, A., Hlavina, W., Holzer, T., Hsu, F., Hua, A., Hubbard, T., Hunt, A., Jackson, I., Jaffe, D.B., Johnson, L.S., Jones, M., Jones, T.A., Joy, A., Kamal, M., Karlsson, E.K., Karolchik, D., Kasprzyk, A., Kawai, J., Keibler, E., Kells, C., Kent, W.J., Kirby, A., Kolbe, D.L., Korf, I., Kucherlapati, R.S., Kulbokas, E.J., Kulp, D., Landers, T., Leger, J.P., Leonard, S., Letunic, I., Levine, R., Li, J., Li, M., Lloyd, C., Lucas, S., Ma, B., Maglott, D.R., Mardis, E.R., Matthews, L., Mauceli, E., Mayer, J.H., McCarthy, M., McCombie, W.R., McLaren, S., McLay, K., McPherson, J.D., Meldrim, J., Meredith, B., Mesirov, J.P., Miller, W., Miner, T.L., Mongin, E., Montgomery, K.T., Morgan, M., Mott, R., Mullikin, J.C., Muzny, D.M., Nash, W.E., Nelson, J.O., Nhan, M.N., Nicol, R., Ning, Z., Nusbaum, C., O’Connor, M.J., Okazaki, Y., Oliver, K., Overton-Larty, E., Pachter, L., Parra, G., Pepin, K.H., Peterson, J., Pevzner, P., Plumb, R., Pohl, C.S., Poliakov, A., Ponce, T.C., Ponting, C.P., Potter, S., Quail, M., Reymond, A., Roe, B.A., Roskin, K.M., Rubin, E.M., Rust, A.G., Santos, R., Sapojnikov, V., Schultz, B., Schultz, J., Schwartz, M.S., Schwartz, S., Scott, C., Seaman, S., Searle, S., Sharpe, T., Sheridan, A., Shownkeen, R., Sims, S., Singer, J.B., Slater, G., Smit, A., Smith, D.R., Spencer, B., Stabenau, A., Stange-Thomann, N., Sugnet, C., Suyama, M., Tesler, G., Thompson, J., Torrents, D., Trevaskis, E., Tromp, J., Ucla, C., Ureta-Vidal, A., Vinson, J.P., Von Niederhausern, A.C., Wade, C.M., Wall, M., Weber, R.J., Weiss, R.B., Wendl, M.C., West, A.P., Wetterstrand, K., Wheeler, R., Whelan, S., Wierzbowski, J., Willey, D., Williams, S., Wilson, R.K., Winter, E., Worley, K.C., Wyman, D., Yang, S., Yang, S.P., Zdobnov, E.M., Zody, M.C., and Lander, E.S. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562.CrossRefGoogle Scholar
  25. Nagaraj, N., Wisniewski, J.R., Geiger, T., Cox, J., Kircher, M., Kelso, J., Paabo, S., and Mann, M. (2011). Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 7, 548.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nehrt, N.L., Clark, W.T., Radivojac, P., and Hahn, M.W. (2011). Testing the ortholog conjecture with comparative functional genomic data from mammals. PLoS Comput Biol 7, e1002073.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nurtdinov, R.N., Artamonova, II, Mironov, A.A., and Gelfand, M.S. (2003). Low conservation of alternative splicing patterns in the human and mouse genomes. Hum Mol Genet 12, 1313–1320.CrossRefPubMedGoogle Scholar
  28. Ozsolak, F., and Milos, P.M. (2011). RNA sequencing: advances, challenges and opportunities. Nature Rev Genet 12, 87–98.CrossRefPubMedGoogle Scholar
  29. Pal, S., Gupta, R., Kim, H., Wickramasinghe, P., Baubet, V., Showe, L.C., Dahmane, N., and Davuluri, R.V. (2011). Alternative transcription exceeds alternative splicing in generating the transcriptome diversity of cerebellar development. Genome Res 21, 1260–1272.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pereira, V., Waxman, D., and Eyre-Walker, A. (2009). A problem with the correlation coefficient as a measure of gene expression divergence. Genetics 183, 1597–1600.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Piasecka, B., Robinson-Rechavi, M., and Bergmann, S. (2012). Correcting for the bias due to expression specificity improves the estimation of constrained evolution of expression between mouse and human. Bioinformatics 28, 1865–1872.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Qian, W., Liao, B.Y., Chang, A.Y., and Zhang, J. (2010). Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends Genet 26, 425–430.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ramskold, D., Luo, S., Wang, Y.C., Li, R., Deng, Q., Faridani, O.R., Daniels, G.A., Khrebtukova, I., Loring, J.F., Laurent, L.C., Schroth, G.P., and Sandberg, R. (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30, 777–782.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rebhan, M., Chalifa-Caspi, V., Prilusky, J., and Lancet, D. (1998). Gene-Cards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics 14, 656–664.CrossRefPubMedGoogle Scholar
  35. Roux, J., and Robinson-Rechavi, M. (2011). Age-dependent gain of alternative splice forms and biased duplication explain the relation between splicing and duplication. Genome Res 21, 357–363.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Shapiro, E., Biezuner, T., and Linnarsson, S. (2013). Single-cell sequencing- based technologies will revolutionize whole-organism science. Nat Rev Genet 14, 618–630.CrossRefPubMedGoogle Scholar
  37. Studer, R.A., and Robinson-Rechavi, M. (2009). How confident can we be that orthologs are similar, but paralogs differ? Trends Genet 25, 210–216.Google Scholar
  38. Takeda, J., Suzuki, Y., Sakate, R., Sato, Y., Seki, M., Irie, T., Takeuchi, N., Ueda, T., Nakao, M., Sugano, S., Gojobori, T., and Imanishi, T. (2008). Low conservation and species-specific evolution of alternative splicing in humans and mice: comparative genomics analysis using well-annotated full-length cDNAs. Nucleic Acids Res 36, 6386–6395.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Trapnell, C., Hendrickson, D.G., Sauvageau, M., Goff, L., Rinn, J.L., and Pachter, L. (2013). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31, 46–53.CrossRefPubMedGoogle Scholar
  40. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28, 511–515.CrossRefPubMedPubMedCentralGoogle Scholar
  41. van der Vegt, B., de Bock, G.H., Hollema, H., and Wesseling, J. (2009). Microarray methods to identify factors determining breast cancer progression: potentials, limitations, and challenges. Crit Rev Oncol Hematol 70, 1–11.CrossRefPubMedGoogle Scholar
  42. Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10, 57–63.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wingender, E., Schoeps, T., and Donitz, J. (2013). TFClass: an expandable hierarchical classification of human transcription factors. Nucleic Acids Res 41, D165–170.CrossRefPubMedGoogle Scholar
  44. Xing, Y., Ouyang, Z., Kapur, K., Scott, M.P., and Wong, W.H. (2007). Assessing the conservation of mammalian gene expression using high-density exon arrays. Mol Biol Evol 24, 1283–1285.CrossRefPubMedGoogle Scholar
  45. Xue, Z., Huang, K., Cai, C., Cai, L., Jiang, C.Y., Feng, Y., Liu, Z., Zeng, Q., Cheng, L., Sun, Y.E., Liu, J.Y., Horvath, S., and Fan, G. (2013). Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yashiro, K., Saijoh, Y., Sakuma, R., Tada, M., Tomita, N., Amano, K., Matsuda, Y., Monden, M., Okada, S., and Hamada, H. (2000). Distinct transcriptional regulation and phylogenetic divergence of human LEFTY genes. Genes Cells 5, 343–357.CrossRefPubMedGoogle Scholar
  47. Yeo, G.W. (2005). Splicing regulators: targets and drugs. Genome Biol 6, 240.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Geng Chen
    • 1
    • 2
  • Jiwei Chen
    • 1
  • Jianmin Yang
    • 1
  • Long Chen
    • 1
  • Xiongfei Qu
    • 1
  • Caiping Shi
    • 1
  • Baitang Ning
    • 3
  • Leming Shi
    • 2
    • 3
  • Weida Tong
    • 3
  • Yongxiang Zhao
    • 4
  • Meixia Zhang
    • 5
  • Tieliu Shi
    • 1
  1. 1.The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
  2. 2.Center for Pharmacogenomics, School of PharmacyFudan UniversityShanghaiChina
  3. 3.National Center for Toxicological ResearchUS Food and Drug AdministrationJeffersonUSA
  4. 4.Biological Targeting Diagnosis and Therapy Research CenterGuangxi Medical UniversityNanningChina
  5. 5.Department of Ophthalmology, West China HospitalSichuan UniversityChengduChina

Personalised recommendations