Integrated interface between composite electrolyte and cathode with low resistance enables ultra-long cycle-lifetime in solid-state lithium-metal batteries

Abstract

We report a three-dimensional (3D) nanofiber-reinforced solid composite electrolyte with a 3D Li+-conducting ceramic network of Li6.25Ga0.25La3Zr2O12 (LLZO) nanofibers. Benefiting from the 3D structure, the composite shows a high ionic conductivity of 3.2×10−4 S cm−1 and Li-ion transference number of 0.32 at room temperature. The interfacial resistance between the composite solid electrolyte and cathode is mitigated by creating an integrated interfacial structure, in which the polyethylene oxide (PEO)-lithiumbis(trifluoromethylsulphonyl)imide (LiTFSI) binder and ionic liquids (ILs) form a viscoelastic interface. Therefore, intimate contact, low interfacial impedance, and fast ion-transport between the cathode and the solid electrolyte are simultaneously achieved. Solid-state lithium metal batteries with the LiFePO4 cathode deliver a superior capacity (158.0 mA h g−1) and significant capacity retention (90.4% retention after 800 cycles) at 60 °C. Moreover, the smooth and uniform Li surface after long-term cycling confirms the successful suppression of the dendrite formation. The integrated interfacial structure provides a solution to the interfacial problem and improves the cycling performance in solid-state Li-metal batteries.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Janek J, Zeier WG. Nat Energy, 2016, 1: 16141

    Article  Google Scholar 

  2. 2

    Hu YS. Nat Energy, 2016, 1: 16042

    CAS  Article  Google Scholar 

  3. 3

    Motavalli J. Nature, 2015, 526: S96–S97

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Liu B, Zhang JG, Xu W. Joule, 2018, 2: 833–845

    CAS  Article  Google Scholar 

  5. 5

    Yang C, Fu K, Zhang Y, Hitz E, Hu L. Adv Mater, 2017, 29: 1701169

    Article  CAS  Google Scholar 

  6. 6

    Wang X, Kerr R, Chen F, Goujon N, Pringle JM, Mecerreyes D, Forsyth M, Howlett PC. Adv Mater, 2020, 32: 1905219

    CAS  Article  Google Scholar 

  7. 7

    Cheng XB, Zhang R, Zhao CZ, Zhang Q. Chem Rev, 2017, 117: 10403–10473

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L. Energy Storage Mater, 2016, 5: 139–164

    Article  Google Scholar 

  9. 9

    Manthiram A, Yu X, Wang S. Nat Rev Mater, 2017, 2: 16103

    CAS  Article  Google Scholar 

  10. 10

    Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y. Chem Rev, 2016, 116: 140–162

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Chem Rev, 2020, 120: 6878–6933

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Xu K. Chem Rev, 2014, 114: 11503–11618

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Zhao Q, Stalin S, Zhao CZ, Archer LA. Nat Rev Mater, 2020, 5: 229–252

    CAS  Article  Google Scholar 

  14. 14

    Long L, Wang S, Xiao M, Meng Y. J Mater Chem A, 2016, 4: 10038–10069

    CAS  Article  Google Scholar 

  15. 15

    Li Z, Xie HX, Zhang XY, Guo X. J Mater Chem A, 2020, 8: 3892–3900

    CAS  Article  Google Scholar 

  16. 16

    Chen L, Li Y, Li SP, Fan LZ, Nan CW, Goodenough JB. Nano Energy, 2018, 46: 176–184

    CAS  Article  Google Scholar 

  17. 17

    Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y. Nano Lett, 2015, 15: 2740–2745

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Bi J, Mu D, Wu B, Fu J, Yang H, Mu G, Zhang L, Wu F. J Mater Chem A, 2020, 8: 706–713

    CAS  Article  Google Scholar 

  19. 19

    Duan H, Fan M, Chen WP, Li JY, Wang PF, Wang WP, Shi JL, Yin YX, Wan LJ, Guo YG. Adv Mater, 2019, 31: 1807789

    Article  CAS  Google Scholar 

  20. 20

    Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X. Adv Energy Mater, 2019, 9: 1804004

    Article  CAS  Google Scholar 

  21. 21

    Liu W, Lee SW, Lin D, Shi F, Wang S, Sendek AD, Cui Y. Nat Energy, 2017, 2: 17035

    CAS  Article  Google Scholar 

  22. 22

    Zhang X, Liu T, Zhang S, Huang X, Xu B, Lin Y, Xu B, Li L, Nan CW, Shen Y. J Am Chem Soc, 2017, 139: 13779–13785

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan LZ, Nan CW. Joule, 2019, 3: 1190–1199

    CAS  Article  Google Scholar 

  24. 24

    Bae J, Li Y, Zhang J, Zhou X, Zhao F, Shi Y, Goodenough JB, Yu G. Angew Chem Int Ed, 2018, 57: 2096–2100

    CAS  Article  Google Scholar 

  25. 25

    Bae J, Li Y, Zhao F, Zhou X, Ding Y, Yu G. Energy Storage Mater, 2018, 15: 46–52

    Article  Google Scholar 

  26. 26

    Li D, Chen L, Wang T, Fan LZ. ACS Appl Mater Interfaces, 2018, 10: 7069–7078

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Wang X, Zhang Y, Zhang X, Liu T, Lin YH, Li L, Shen Y, Nan CW. ACS Appl Mater Interfaces, 2018, 10: 24791–24798

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Li Z, Huang HM, Zhu JK, Wu JF, Yang H, Wei L, Guo X. ACS Appl Mater Interfaces, 2019, 11: 784–791

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Zhao CZ, Duan H, Huang JQ, Zhang J, Zhang Q, Guo YG, Wan LJ. Sci China Chem, 2019, 62: 1286–1299

    CAS  Article  Google Scholar 

  30. 30

    Han X, Gong Y, Fu KK, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L. Nat Mater, 2017, 16: 572–579

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31

    Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. J Am Chem Soc, 2016, 138: 9385–9388

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Chen RJ, Zhang YB, Liu T, Xu BQ, Lin YH, Nan CW, Shen Y. ACS Appl Mater Interfaces, 2017, 9: 9654–9661

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Wan Z, Lei D, Yang W, Liu C, Shi K, Hao X, Shen L, Lv W, Li B, Yang QH, Kang F, He YB. Adv Funct Mater, 2019, 29: 1805301

    Article  CAS  Google Scholar 

  34. 34

    Yu X, Wang L, Ma J, Sun X, Zhou X, Cui G. Adv Energy Mater, 2020, 10: 1903939

    CAS  Article  Google Scholar 

  35. 35

    Wang C, Wang T, Wang L, Hu Z, Cui Z, Li J, Dong S, Zhou X, Cui G. Adv Sci, 2019, 6: 1901036

    CAS  Article  Google Scholar 

  36. 36

    Wu J, Guo X. Small, 2019, 15: 1804413

    Article  CAS  Google Scholar 

  37. 37

    Wu JF, Guo X. J Mater Chem A, 2019, 7: 2653–2659

    CAS  Article  Google Scholar 

  38. 38

    Osada I, de Vries H, Scrosati B, Passerini S. Angew Chem Int Ed, 2016, 55: 500–513

    CAS  Article  Google Scholar 

  39. 39

    Fu K, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C, Li Y, Wachsman ED, Hu L. Proc Natl Acad Sci USA, 2016, 113: 7094–7099

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Yamada H, Bhattacharyya A, Maier J. Adv Funct Mater, 2006, 16: 525–530

    CAS  Article  Google Scholar 

  41. 41

    Zhao Y, Wu C, Peng G, Chen X, Yao X, Bai Y, Wu F, Chen S, Xu X. J Power Sources, 2016, 301: 47–53

    CAS  Article  Google Scholar 

  42. 42

    Evans J, Vincent CA, Bruce PG. Polymer, 1987, 28: 2324–2328

    CAS  Article  Google Scholar 

  43. 43

    Xue Z, He D, Xie X. J Mater Chem A, 2015, 3: 19218–19253

    CAS  Article  Google Scholar 

  44. 44

    Kim DH, Hwang S, Cho JJ, Yu S, Kim S, Jeon J, Ahn KH, Lee C, Song HK, Lee H. ACS Energy Lett, 2019, 4: 1265–1270

    CAS  Article  Google Scholar 

  45. 45

    Zou Z, Li Y, Lu Z, Wang D, Cui Y, Guo B, Li Y, Liang X, Feng J, Li H, Nan CW, Armand M, Chen L, Xu K, Shi S. Chem Rev, 2020, 120: 4169–4221

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Zhao CZ, Zhang XQ, Cheng XB, Zhang R, Xu R, Chen PY, Peng HJ, Huang JQ, Zhang Q. Proc Natl Acad Sci USA, 2017, 114: 11069–11074

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Wang C, Fu K, Kammampata SP, McOwen DW, Samson AJ, Zhang L, Hitz GT, Nolan AM, Wachsman ED, Mo Y, Thangadurai V, Hu L. Chem Rev, 2020, 120: 4257–4300

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48

    Sun Y, Liu N, Cui Y. Nat Energy, 2016, 1: 16071

    CAS  Article  Google Scholar 

  49. 49

    Cheng XB, Zhao CZ, Yao YX, Liu H, Zhang Q. Chem, 2019, 5: 74–96

    CAS  Article  Google Scholar 

  50. 50

    Zhou Q, Ma J, Dong S, Li X, Cui G. Adv Mater, 2019, 31: 1902029

    CAS  Article  Google Scholar 

  51. 51

    Li Z, Sha WX, Guo X. ACS Appl Mater Interfaces, 2019, 11: 26920–26927

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Liu FQ, Wang WP, Yin YX, Zhang SF, Shi JL, Wang L, Zhang XD, Zheng Y, Zhou JJ, Li L, Guo YG. Sci Adv, 2018, 4: eaat5383

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51672096) and China Postdoctoral Science Foundation funded project (2020M682403). The authors would also like to express their appreciation to the National Natural Science Foundation of China and the Israeli Science Foundation for funding this research within the framework of the joint NSFC-ISF (51961145302). The analytical and testing center of Huazhong University of Science and Technology is acknowledged for the DSC, FTIR, SEM and TEM investigations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xin Guo.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Guo, X. Integrated interface between composite electrolyte and cathode with low resistance enables ultra-long cycle-lifetime in solid-state lithium-metal batteries. Sci. China Chem. (2021). https://doi.org/10.1007/s11426-020-9936-6

Download citation

Keywords

  • composite solid electrolyte
  • Li7La3Zr2O12 nanofiber
  • interfacial resistance
  • solid-state battery