Abstract
Herein, we reported the stereodivergent synthesis of C-glycosamino acids via Pd/Cu dual catalysis and found a suitable system to resolve many challenges, such as the tolerance towards the density of functional groups, the variability of the anomeric position, the compatibility of appropriate catalyst combinations, the regioselectivity of nucleophiles, and the match/mismatch problems between chiral substrates and chiral ligand-metal complexes. The method enables the efficient preparation of a series of unnatural C-glycosamino acid skeletons bearing two contiguous stereogenic centers in good yields with excellent diastereos-electivity. From this crucial precursor, various C-glycosamino acid derivatives have been achieved diversely. The readily prepared C-glycosamino acid hybrids will meet the growing demands for the development of new molecular entities for discovering new drugs and materials. This stereodivergent synthesis of C-glycosamino acids will further accelerate the study of their structural features, mode of action, and potential biological applications in the near future.
This is a preview of subscription content, access via your institution.
References
- 1
Schweizer F. Angew Chem Int Ed, 2002, 41: 230–253
- 2
von Roedern EG, Kessler H. Angew Chem Int Ed Engl, 1994, 33: 687–689
- 3
Kobata A. Acc Chem Res, 1993, 26: 319–324
- 4 (a)
For selected reviews on glycosamino acids, see: Dondoni A, Marra A. Chem Rev, 2000, 100: 4395–4422
- 4 (b)
Chakraborty T, Ghosh S, Jayaprakash S. Curr Med Chem, 2002, 9: 421–435
- 4 (c)
Chakraborty TK, Srinivasu P, Tapadar S, Mohan BK. J Chem Sci, 2004, 116: 187–207
- 4 (d)
Tian GZ, Wang XL, Hu J, Wang XB, Guo XQ, Yin J. Chin Chem Lett, 2015, 26: 922–930
- 5 (a)
Only a few cases C-glycopeptides were isolated from natural sources: Hofsteenge J, Mueller DR, de Beer T, Loeffler A, Richter WJ, Vliegenthart JFG. Biochemistry, 1994, 33: 13524–13530
- 5 (b)
de Beer T, Vliegenthart JFG, Loeffler A, Hofsteenge J. Biochemistry, 1995, 34: 11785–11789
- 5 (c)
Löffler A, Doucey MA, Jansson AM, Müller DR, de Beer T, Hess D, Meldal M, Richter WJ, Vliegenthart JFG, Hofsteenge J. Biochemistry, 1996, 35: 12005–12014
- 5 (d)
Doucey M. Glycobiology, 1999, 9: 435–441
- 6 (a)
Moos E, Ben R. Curr Topic Med Chem, 2005, 5: 1351–1361
- 6 (b)
Gustafsson T, Saxin M, Kihlberg J. J Org Chem, 2003, 68: 2506–2509
- 7 (a)
Yang G, Schmieg J, Tsuji M, Franck RW. Angew Chem Int Ed, 2004, 43: 3818–3822
- 7 (b)
Laurent X, Bertin B, Renault N, Farce A, Speca S, Milhomme O, Millet R, Desreumaux P, Hénon E, Chavatte P. J Med Chem, 2014, 57: 5489–5508
- 8 (a)
Dondoni A, Junquera F, Merchán FL, Merino P, Scherrmann MC, Tejero T. J Org Chem, 1997, 62: 5484–5496
- 8 (b)
McDevitt JP, Lansbury PT. J Am Chem Soc, 1996, 118: 3818–3828
- 8 (c)
Andrews RS, Becker JJ, Gagné MR. Angew Chem Int Ed, 2012, 51: 4140–4143
- 8 (d)
Colombo L, Casiraghi G, Pittalis A, Rassu G. J Org Chem, 1991, 56: 3897–3900
- 8 (e)
Di Giacomo M, Serra M, Brusasca M, Colombo L. J Org Chem, 2011, 76: 5247–5257
- 8 (f)
Schweizer F, Inazu T. Org Lett, 2001, 3: 4115–4118
- 9 (a)
For reviews on dual catalysis, see: Allen AE, MacMillan DWC. Chem Sci, 2012, 3: 633–658
- 9 (b)
Zhang HH, Chen H, Zhu C, Yu S. Sci China Chem, 2020, 63: 637–647
- 9 (c)
Skubi KL, Blum TR, Yoon TP. Chem Rev, 2016, 116: 10035–10074
- 9 (d)
For selected examples on dual catalysis, see: Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science, 2013, 340: 1065–1068
- 9 (e)
Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DWC. Science, 2014, 345: 437–440
- 9 (f)
Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR. Science, 2019, 366: 364–369
- 10 (a)
For reviews on C-glycoside synthesis, see: Lee D, He M. Curr Topic Med Chem, 2005, 5: 1333–1350
- 10 (b)
Bokor É, Kun S, Goyard D, Tóth M, Praly JP, Vidal S, Somsák L. Chem Rev, 2017, 117: 1687–1764
- 10 (c)
Yang Y, Yu B. Chem Rev, 2017, 117: 12281–12356
- 10 (d)
Leng WL, Yao H, He JX, Liu XW. Acc Chem Res, 2018, 51: 628–639
- 10 (e)
Kitamura K, Ando Y, Matsumoto T, Suzuki K. Chem Rev, 2018, 118: 1495–1598
- 11 (a)
For selected examples of the transition-metal-catalyzed C-glycosylation, see: Gong H, Sinisi R, Gagné MR. J Am Chem Soc, 2007, 129: 1908–1909
- 11 (b)
Gong H, Gagne MR. J Am Chem Soc, 2008, 130: 12177–12183
- 11 (c)
Nicolas L, Angibaud P, Stansfield I, Bonnet P, Meerpoel L, Reymond S, Cossy J. Angew Chem Int Ed, 2012, 51: 11101–11104
- 11 (d)
Zhao C, Jia X, Wang X, Gong H. J Am Chem Soc, 2014, 136: 17645–17651
- 11 (e)
Zhu F, Rourke MJ, Yang T, Rodriguez J, Walczak MA. J Am Chem Soc, 2016, 138: 12049–12052
- 11 (f)
Zhu F, Rodriguez J, Yang T, Kevlishvili I, Miller E, Yi D, O’Neill S, Rourke MJ, Liu P, Walczak MA. J Am Chem Soc, 2017, 139: 17908–17922
- 11 (g)
Badir SO, Dumoulin A, Matsui JK, Molander GA. Angew Chem Int Ed, 2018, 57: 6610–6613
- 11 (h)
Dumoulin A, Matsui JK, Gutiérrez-Bonet Á, Molander GA. Angew Chem Int Ed, 2018, 57: 6614–6618
- 11 (i)
Dai Y, Tian B, Chen H, Zhang Q. ACS Catal, 2019, 9: 2909–2915
- 12 (a)
For reviews on C-Glycosylation via Heck reaction, see: Wellington KW, Benner SA. Nucleosides Nucleotides Nucleic Acids, 2006, 25: 1309–1333
- 12 (b)
Mabit T, Siard A, Legros F, Guillarme S, Martel A, Lebreton J, Carreaux F, Dujardin G, Collet S. Chem Eur J, 2018, 24: 14069–14074
- 13 (a)
Babu RS, O’Doherty GA. J Am Chem Soc, 2003, 125: 12406–12407
- 13 (b)
Babu RS, Zhou M, O’Doherty GA. J Am Chem Soc, 2004, 126: 3428–3429
- 13 (c)
Guo H, O’Doherty GA. Angew Chem Int Ed, 2007, 46: 5206–5208
- 13 (d)
Bajaj SO, Sharif EU, Akhmedov NG, O’Doherty GA. Chem Sci, 2014, 5: 2230–2234
- 14
Gomez A, Lobo F, Miranda S, Lopez J. Molecules, 2015, 20: 8357–8394
- 15 (a)
Richards CJ, Damalidis T, Hibbs DE, Hursthouse MB. Synlett, 1995, 1995(01): 74–76
- 15 (b)
Richards CJ, Mulvaney AW. Tetrahedron-Asymmetry, 1996, 7: 1419–1430
- 15 (c)
Stangeland EL, Sammakia T. Tetrahedron, 1997, 53: 16503–16510
- 15 (d)
Gao W, Zhang X, Raghunath M. Org Lett, 2005, 7: 4241–4244
- 15 (e)
Yan XX, Peng Q, Zhang Y, Zhang K, Hong W, Hou XL, Wu YD. Angew Chem Int Ed, 2006, 45: 1979–1983
- 15 (f)
Tong MC, Chen X, Tao HY, Wang CJ. Angew Chem Int Ed, 2013, 52: 12377–12380
- 15 (g)
Tong MC, Chen X, Li J, Huang R, Tao H, Wang CJ. Angew Chem Int Ed, 2014, 53: 4680–4684
- 15 (h)
Wei L, Zhu Q, Xu SM, Chang X, Wang CJ. J Am Chem Soc, 2018, 140: 1508–1513
- 15 (i)
Zhang Q, Yu H, Shen L, Tang T, Dong D, Chai W, Zi W. J Am Chem Soc, 2019, 141: 14554–14559
- 16 (a)
Zheng LS, Llopis Q, Echeverria PG, Férard C, Guillamot G, Phansavath P, Ratovelomanana-Vidal V. J Org Chem, 2017, 82: 5607–5615
- 16 (b)
Guo H, O’Doherty GA. Org Lett, 2005, 7: 3921–3924
- 16 (c)
Suzuki K, Yuki Y, Mukaiyama T. Chem Lett, 1981, 10: 1529–1532
- 16 (d)
Tsubuki M, Kanai K, Nagase H, Honda T. Tetrahedron, 1999, 55: 2493–2514
- 16 (e)
Dai Y, Zheng J, Zhang Q. Org Lett, 2018, 20: 3923–3927
- 17 (a)
Colombo L, di Giacomo M, Ciceri P. Tetrahedron, 2002, 58: 9381–9386
- 17 (b)
Guaragna A, D’Alonzo D, Paolella C, Napolitano C, Palumbo G. J Org Chem, 2010, 75: 3558–3568
- 17 (c)
Ansari AA, Rajasekaran P, Khan MM, Vankar YD. J Org Chem, 2014, 79: 1690–1699
- 17 (d)
Bataille C, Bégin G, Guillam A, Lemiègre L, Lys C, Maddaluno J, Toupet L. J Org Chem, 2002, 67: 8054–8062
- 17 (e)
Hong BC, Chen ZY, Nagarajan A, Rudresha K, Chavan V, Chen WH, Jiang YF, Zhang SC, Lee GH, Sarshar S. Tetrahedron Lett, 2005, 46: 1281–1285
- 18
Berova N, Bari LD, Pescitelli G. Chem Soc Rev, 2007, 36: 914–931
- 19
Mydock-McGrane LK, Hannan TJ, Janetka JW. Expert Opin Drug Discovery, 2017, 12: 711–731
Acknowledgements
This work was supported by the National Natural Science Foundation of China (051170001, 21772084, 22071087), the Fundamental Research Funds for the Central Universities (lzujbky-2017-k06) and the Open Projects Funds of Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University (2019CCG05). Xiaolei Wang thanks the Thousand Young Talents Program for financial support. We also thank Sumit O. Bajaj (Corden Pharma Boulder) for language polishing and Prof. Quanxiang Wu & Ya Li for giving suggestion towards the absolute configuration determining via CD spectra.
Author information
Affiliations
Corresponding authors
Additional information
Conflict of interest
The authors declare no conflict of interest.
Supporting information
The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
Rights and permissions
About this article
Cite this article
Yan, X., Feng, F., Zhou, L. et al. Stereodivergent synthesis of C-glycosamino acids via Pd/Cu dual catalysis. Sci. China Chem. (2021). https://doi.org/10.1007/s11426-020-9930-7
Received:
Accepted:
Published:
Keywords
- C-glycosamino acid
- glycomimetics
- peptidomimetics
- stereodivergent
- dual catalysis