Skip to main content
Log in

Stereodivergent synthesis of C-glycosamino acids via Pd/Cu dual catalysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Herein, we reported the stereodivergent synthesis of C-glycosamino acids via Pd/Cu dual catalysis and found a suitable system to resolve many challenges, such as the tolerance towards the density of functional groups, the variability of the anomeric position, the compatibility of appropriate catalyst combinations, the regioselectivity of nucleophiles, and the match/mismatch problems between chiral substrates and chiral ligand-metal complexes. The method enables the efficient preparation of a series of unnatural C-glycosamino acid skeletons bearing two contiguous stereogenic centers in good yields with excellent diastereos-electivity. From this crucial precursor, various C-glycosamino acid derivatives have been achieved diversely. The readily prepared C-glycosamino acid hybrids will meet the growing demands for the development of new molecular entities for discovering new drugs and materials. This stereodivergent synthesis of C-glycosamino acids will further accelerate the study of their structural features, mode of action, and potential biological applications in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schweizer F. Angew Chem Int Ed, 2002, 41: 230–253

    Article  Google Scholar 

  2. von Roedern EG, Kessler H. Angew Chem Int Ed Engl, 1994, 33: 687–689

    Article  Google Scholar 

  3. Kobata A. Acc Chem Res, 1993, 26: 319–324

    Article  Google Scholar 

  4. For selected reviews on glycosamino acids, see: Dondoni A, Marra A. Chem Rev, 2000, 100: 4395–4422

    Article  Google Scholar 

  5. Chakraborty T, Ghosh S, Jayaprakash S. Curr Med Chem, 2002, 9: 421–435

    Article  Google Scholar 

  6. Chakraborty TK, Srinivasu P, Tapadar S, Mohan BK. J Chem Sci, 2004, 116: 187–207

    Article  Google Scholar 

  7. Tian GZ, Wang XL, Hu J, Wang XB, Guo XQ, Yin J. Chin Chem Lett, 2015, 26: 922–930

    Article  Google Scholar 

  8. Only a few cases C-glycopeptides were isolated from natural sources: Hofsteenge J, Mueller DR, de Beer T, Loeffler A, Richter WJ, Vliegenthart JFG. Biochemistry, 1994, 33: 13524–13530

    Article  Google Scholar 

  9. de Beer T, Vliegenthart JFG, Loeffler A, Hofsteenge J. Biochemistry, 1995, 34: 11785–11789

    Article  Google Scholar 

  10. Löffler A, Doucey MA, Jansson AM, Müller DR, de Beer T, Hess D, Meldal M, Richter WJ, Vliegenthart JFG, Hofsteenge J. Biochemistry, 1996, 35: 12005–12014

    Article  Google Scholar 

  11. Doucey M. Glycobiology, 1999, 9: 435–441

    Article  Google Scholar 

  12. Moos E, Ben R. Curr Topic Med Chem, 2005, 5: 1351–1361

    Article  Google Scholar 

  13. Gustafsson T, Saxin M, Kihlberg J. J Org Chem, 2003, 68: 2506–2509

    Article  Google Scholar 

  14. Yang G, Schmieg J, Tsuji M, Franck RW. Angew Chem Int Ed, 2004, 43: 3818–3822

    Article  Google Scholar 

  15. Laurent X, Bertin B, Renault N, Farce A, Speca S, Milhomme O, Millet R, Desreumaux P, Hénon E, Chavatte P. J Med Chem, 2014, 57: 5489–5508

    Article  Google Scholar 

  16. Dondoni A, Junquera F, Merchán FL, Merino P, Scherrmann MC, Tejero T. J Org Chem, 1997, 62: 5484–5496

    Article  Google Scholar 

  17. McDevitt JP, Lansbury PT. J Am Chem Soc, 1996, 118: 3818–3828

    Article  Google Scholar 

  18. Andrews RS, Becker JJ, Gagné MR. Angew Chem Int Ed, 2012, 51: 4140–4143

    Article  Google Scholar 

  19. Colombo L, Casiraghi G, Pittalis A, Rassu G. J Org Chem, 1991, 56: 3897–3900

    Article  Google Scholar 

  20. Di Giacomo M, Serra M, Brusasca M, Colombo L. J Org Chem, 2011, 76: 5247–5257

    Article  Google Scholar 

  21. Schweizer F, Inazu T. Org Lett, 2001, 3: 4115–4118

    Article  Google Scholar 

  22. For reviews on dual catalysis, see: Allen AE, MacMillan DWC. Chem Sci, 2012, 3: 633–658

    Article  Google Scholar 

  23. Zhang HH, Chen H, Zhu C, Yu S. Sci China Chem, 2020, 63: 637–647

    Article  Google Scholar 

  24. Skubi KL, Blum TR, Yoon TP. Chem Rev, 2016, 116: 10035–10074

    Article  Google Scholar 

  25. For selected examples on dual catalysis, see: Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science, 2013, 340: 1065–1068

    Article  Google Scholar 

  26. Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DWC. Science, 2014, 345: 437–440

    Article  Google Scholar 

  27. Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR. Science, 2019, 366: 364–369

    Article  Google Scholar 

  28. For reviews on C-glycoside synthesis, see: Lee D, He M. Curr Topic Med Chem, 2005, 5: 1333–1350

    Article  Google Scholar 

  29. Bokor É, Kun S, Goyard D, Tóth M, Praly JP, Vidal S, Somsák L. Chem Rev, 2017, 117: 1687–1764

    Article  Google Scholar 

  30. Yang Y, Yu B. Chem Rev, 2017, 117: 12281–12356

    Article  Google Scholar 

  31. Leng WL, Yao H, He JX, Liu XW. Acc Chem Res, 2018, 51: 628–639

    Article  Google Scholar 

  32. Kitamura K, Ando Y, Matsumoto T, Suzuki K. Chem Rev, 2018, 118: 1495–1598

    Article  Google Scholar 

  33. For selected examples of the transition-metal-catalyzed C-glycosylation, see: Gong H, Sinisi R, Gagné MR. J Am Chem Soc, 2007, 129: 1908–1909

    Article  Google Scholar 

  34. Gong H, Gagne MR. J Am Chem Soc, 2008, 130: 12177–12183

    Article  Google Scholar 

  35. Nicolas L, Angibaud P, Stansfield I, Bonnet P, Meerpoel L, Reymond S, Cossy J. Angew Chem Int Ed, 2012, 51: 11101–11104

    Article  Google Scholar 

  36. Zhao C, Jia X, Wang X, Gong H. J Am Chem Soc, 2014, 136: 17645–17651

    Article  Google Scholar 

  37. Zhu F, Rourke MJ, Yang T, Rodriguez J, Walczak MA. J Am Chem Soc, 2016, 138: 12049–12052

    Article  Google Scholar 

  38. Zhu F, Rodriguez J, Yang T, Kevlishvili I, Miller E, Yi D, O’Neill S, Rourke MJ, Liu P, Walczak MA. J Am Chem Soc, 2017, 139: 17908–17922

    Article  Google Scholar 

  39. Badir SO, Dumoulin A, Matsui JK, Molander GA. Angew Chem Int Ed, 2018, 57: 6610–6613

    Article  Google Scholar 

  40. Dumoulin A, Matsui JK, Gutiérrez-Bonet Á, Molander GA. Angew Chem Int Ed, 2018, 57: 6614–6618

    Article  Google Scholar 

  41. Dai Y, Tian B, Chen H, Zhang Q. ACS Catal, 2019, 9: 2909–2915

    Article  Google Scholar 

  42. For reviews on C-Glycosylation via Heck reaction, see: Wellington KW, Benner SA. Nucleosides Nucleotides Nucleic Acids, 2006, 25: 1309–1333

    Article  Google Scholar 

  43. Mabit T, Siard A, Legros F, Guillarme S, Martel A, Lebreton J, Carreaux F, Dujardin G, Collet S. Chem Eur J, 2018, 24: 14069–14074

    Article  Google Scholar 

  44. Babu RS, O’Doherty GA. J Am Chem Soc, 2003, 125: 12406–12407

    Article  Google Scholar 

  45. Babu RS, Zhou M, O’Doherty GA. J Am Chem Soc, 2004, 126: 3428–3429

    Article  Google Scholar 

  46. Guo H, O’Doherty GA. Angew Chem Int Ed, 2007, 46: 5206–5208

    Article  Google Scholar 

  47. Bajaj SO, Sharif EU, Akhmedov NG, O’Doherty GA. Chem Sci, 2014, 5: 2230–2234

    Article  Google Scholar 

  48. Gomez A, Lobo F, Miranda S, Lopez J. Molecules, 2015, 20: 8357–8394

    Article  Google Scholar 

  49. Richards CJ, Damalidis T, Hibbs DE, Hursthouse MB. Synlett, 1995, 1995(01): 74–76

    Article  Google Scholar 

  50. Richards CJ, Mulvaney AW. Tetrahedron-Asymmetry, 1996, 7: 1419–1430

    Article  Google Scholar 

  51. Stangeland EL, Sammakia T. Tetrahedron, 1997, 53: 16503–16510

    Article  Google Scholar 

  52. Gao W, Zhang X, Raghunath M. Org Lett, 2005, 7: 4241–4244

    Article  Google Scholar 

  53. Yan XX, Peng Q, Zhang Y, Zhang K, Hong W, Hou XL, Wu YD. Angew Chem Int Ed, 2006, 45: 1979–1983

    Article  Google Scholar 

  54. Tong MC, Chen X, Tao HY, Wang CJ. Angew Chem Int Ed, 2013, 52: 12377–12380

    Article  Google Scholar 

  55. Tong MC, Chen X, Li J, Huang R, Tao H, Wang CJ. Angew Chem Int Ed, 2014, 53: 4680–4684

    Article  Google Scholar 

  56. Wei L, Zhu Q, Xu SM, Chang X, Wang CJ. J Am Chem Soc, 2018, 140: 1508–1513

    Article  Google Scholar 

  57. Zhang Q, Yu H, Shen L, Tang T, Dong D, Chai W, Zi W. J Am Chem Soc, 2019, 141: 14554–14559

    Article  Google Scholar 

  58. Zheng LS, Llopis Q, Echeverria PG, Férard C, Guillamot G, Phansavath P, Ratovelomanana-Vidal V. J Org Chem, 2017, 82: 5607–5615

    Article  Google Scholar 

  59. Guo H, O’Doherty GA. Org Lett, 2005, 7: 3921–3924

    Article  Google Scholar 

  60. Suzuki K, Yuki Y, Mukaiyama T. Chem Lett, 1981, 10: 1529–1532

    Article  Google Scholar 

  61. Tsubuki M, Kanai K, Nagase H, Honda T. Tetrahedron, 1999, 55: 2493–2514

    Article  Google Scholar 

  62. Dai Y, Zheng J, Zhang Q. Org Lett, 2018, 20: 3923–3927

    Article  Google Scholar 

  63. Colombo L, di Giacomo M, Ciceri P. Tetrahedron, 2002, 58: 9381–9386

    Article  Google Scholar 

  64. Guaragna A, D’Alonzo D, Paolella C, Napolitano C, Palumbo G. J Org Chem, 2010, 75: 3558–3568

    Article  Google Scholar 

  65. Ansari AA, Rajasekaran P, Khan MM, Vankar YD. J Org Chem, 2014, 79: 1690–1699

    Article  Google Scholar 

  66. Bataille C, Bégin G, Guillam A, Lemiègre L, Lys C, Maddaluno J, Toupet L. J Org Chem, 2002, 67: 8054–8062

    Article  Google Scholar 

  67. Hong BC, Chen ZY, Nagarajan A, Rudresha K, Chavan V, Chen WH, Jiang YF, Zhang SC, Lee GH, Sarshar S. Tetrahedron Lett, 2005, 46: 1281–1285

    Article  Google Scholar 

  68. Berova N, Bari LD, Pescitelli G. Chem Soc Rev, 2007, 36: 914–931

    Article  Google Scholar 

  69. Mydock-McGrane LK, Hannan TJ, Janetka JW. Expert Opin Drug Discovery, 2017, 12: 711–731

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (051170001, 21772084, 22071087), the Fundamental Research Funds for the Central Universities (lzujbky-2017-k06) and the Open Projects Funds of Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University (2019CCG05). Xiaolei Wang thanks the Thousand Young Talents Program for financial support. We also thank Sumit O. Bajaj (Corden Pharma Boulder) for language polishing and Prof. Quanxiang Wu & Ya Li for giving suggestion towards the absolute configuration determining via CD spectra.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Liu or Xiaolei Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Feng, F., Zhou, L. et al. Stereodivergent synthesis of C-glycosamino acids via Pd/Cu dual catalysis. Sci. China Chem. 64, 552–557 (2021). https://doi.org/10.1007/s11426-020-9930-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9930-7

Keywords

Navigation