Stimulus-responsive water soluble synthetic nanographene

Abstract

Nanographenes (NGs) are exceptionally hydrophobic. They are insoluble in water, preventing the exploration and utilization of their photophysical properties under aqueous conditions. This work discloses an atomically precise water-soluble synthetic NG 1, featuring a 2 nm sp2 carbon skeleton appended with 12 branched triethylene glycol chains. It synergistically combines low critical solution temperature (LCST) behavior and a photothermal effect to create the first thermo- and photo-responsive atomically precise NG functioning in an aqueous solution. The LCST behavior can be attributed to a delicate balance of hydrophobic-hydrophilic interactions, providing a sensitive thermal response to changes over a temperature range of physiological interest (close to 37 °C). Moreover, 1 has considerable photothermal conversion capability, with irradiation of 1 in water by red or near infrared light increasing the solutions temperature to above the clouding point within seconds, leading to a reversible clear-to-turbid transition over many cycles without evident fatigue.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Müllen K. ACS Nano, 2014, 8: 6531–6541

    Article  Google Scholar 

  2. 2

    Narita A, Wang XY, Feng X, Müllen K. Chem Soc Rev, 2015, 44: 6616–6643

    CAS  Article  Google Scholar 

  3. 3

    Segawa Y, Ito H, Itami K. Nat Rev Mater, 2016, 1: 15002

    CAS  Article  Google Scholar 

  4. 4

    Wang XY, Yao X, Müllen K. Sci China Chem, 2019, 62: 1099–1144

    CAS  Article  Google Scholar 

  5. 5

    Yin M, Shen J, Pisula W, Liang M, Zhi L, Mullen K. J Am Chem Soc, 2009, 131: 14618–14619

    CAS  Article  Google Scholar 

  6. 6

    Lin HA, Sato Y, Segawa Y, Nishihara T, Sugimoto N, Scott LT, Higashiyama T, Itami K. Angew Chem Int Ed, 2018, 57: 2874–2878

    CAS  Article  Google Scholar 

  7. 7

    Huang Y, Dou WT, Xu F, Ru HB, Gong Q, Wu D, Yan D, Tian H, He XP, Mai Y, Feng X. Angew Chem Int Ed, 2018, 57: 3366–3371

    CAS  Article  Google Scholar 

  8. 8

    Zhu Y, Xia Z, Cai Z, Yuan Z, Jiang N, Li T, Wang Y, Guo X, Li Z, Ma S, Zhong D, Li Y, Wang J. J Am Chem Soc, 2018, 140: 4222–4226

    CAS  Article  Google Scholar 

  9. 9

    Wang Y, Yin Z, Zhu Y, Gu J, Li Y, Wang J. Angew Chem Int Ed, 2019, 58: 587–591

    CAS  Article  Google Scholar 

  10. 10

    Zhu Y, Guo X, Li Y, Wang J. J Am Chem Soc, 2019, 141: 5511–5517

    CAS  Article  Google Scholar 

  11. 11

    Guo X, Yuan Z, Zhu Y, Li Z, Huang R, Xia Z, Zhang W, Li Y, Wang J. Angew Chem Int Ed, 2019, 58: 16966–16972

    CAS  Article  Google Scholar 

  12. 12

    Ball M, Zhong Y, Wu Y, Schenck C, Ng F, Steigerwald M, Xiao S, Nuckolls C. Acc Chem Res, 2015, 48: 267–276

    CAS  Article  Google Scholar 

  13. 13

    Pun SH, Miao Q. Acc Chem Res, 2018, 51: 1630–1642

    CAS  Article  Google Scholar 

  14. 14

    Majewski MA, Stępień M. Angew Chem Int Ed, 2019, 58: 86–116

    CAS  Article  Google Scholar 

  15. 15

    Tan YZ, Yang B, Parvez K, Narita A, Osella S, Beljonne D, Feng X, Müllen K. Nat Commun, 2013, 4: 2646

    Article  Google Scholar 

  16. 16

    Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat Chem, 2013, 5: 739–744

    CAS  Article  Google Scholar 

  17. 17

    Cheung KY, Chan CK, Liu Z, Miao Q. Angew Chem Int Ed, 2017, 56: 9003–9007

    CAS  Article  Google Scholar 

  18. 18

    Reger D, Haines P, Heinemann FW, Guldi DM, Jux N. Angew Chem Int Ed, 2018, 57: 5938–5942

    CAS  Article  Google Scholar 

  19. 19

    Evans PJ, Ouyang J, Favereau L, Crassous J, Fernández I, Perles J, Martín N. Angew Chem Int Ed, 2018, 57: 6774–6779

    CAS  Article  Google Scholar 

  20. 20

    Hahn U, Maisonhaute E, Nierengarten J-. Angew Chem Int Ed, 2018, 57: 10635–10639

    CAS  Article  Google Scholar 

  21. 21

    Meng D, Liu G, Xiao C, Shi Y, Zhang L, Jiang L, Baldridge KK, Li Y, Siegel JS, Wang Z. J Am Chem Soc, 2019, 141: 5402–5408

    CAS  Article  Google Scholar 

  22. 22

    Cruz CM, Márquez IR, Castro-Fernández S, Cuerva JM, Maçôas E, Campaña AG. Angew Chem Int Ed, 2019, 58: 8068–8072

    CAS  Article  Google Scholar 

  23. 23

    Weber C, Hoogenboom R, Schubert US. Prog Polym Sci, 2012, 37: 686–714

    CAS  Article  Google Scholar 

  24. 24

    Zhang Q, Weber C, Schubert US, Hoogenboom R. Mater Horiz, 2017, 4: 109–116

    CAS  Article  Google Scholar 

  25. 25

    Lutz JF, Akdemir Ö, Hoth A. J Am Chem Soc, 2006, 128: 13046–13047

    CAS  Article  Google Scholar 

  26. 26

    Betancourt JE, Rivera JM. J Am Chem Soc, 2009, 131: 16666–16668

    CAS  Article  Google Scholar 

  27. 27

    Wang F, Klaikherd A, Thayumanavan S. J Am Chem Soc, 2011, 133: 13496–13503

    CAS  Article  Google Scholar 

  28. 28

    Ogoshi T, Shiga R, Yamagishi T. J Am Chem Soc, 2012, 134: 4577–4580

    CAS  Article  Google Scholar 

  29. 29

    Ogoshi T, Kida K, Yamagishi T. J Am Chem Soc, 2012, 134: 20146–20150

    CAS  Article  Google Scholar 

  30. 30

    Wei P, Cook TR, Yan X, Huang F, Stang PJ. J Am Chem Soc, 2014, 136: 15497–15500

    CAS  Article  Google Scholar 

  31. 31

    Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Chem Soc Rev, 2018, 47: 2280–2297

    CAS  Article  Google Scholar 

  32. 32

    Baffou G, Quidant R. Laser Photon Rev, 2013, 7: 171–187

    CAS  Article  Google Scholar 

  33. 33

    Zhang Q, Xu W, Wang X. Sci China Mater, 2018, 61: 905–914

    CAS  Article  Google Scholar 

  34. 34

    Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV, Xia Y. Nat Mater, 2009, 8: 935–939

    CAS  Article  Google Scholar 

  35. 35

    Zhang P, Liu F, Liao Q, Yao H, Geng H, Cheng H, Li C, Qu L. Angew Chem Int Ed, 2018, 57: 16343–16347

    CAS  Article  Google Scholar 

  36. 36

    Bisoyi HK, Urbas AM, Li Q. Adv Opt Mater, 2018, 6: 1800458

    Article  Google Scholar 

  37. 37

    Han B, Zhang YL, Chen QD, Sun HB. Adv Funct Mater, 2018, 28: 1802235

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21871298, 91956118) and the Sun Yat-Sen University. We thank Prof. Dr. Xiaoye Wang from the Nankai University for discussion. Dr. Xiao Zhang and Mr. Zhibin Xiao from the Sun Yat-Sen University are acknowledged for assistance on the calorimetric measurements and photographic recording of the switching process, respectively. We also thank Prof. Wesley R. Browne from the University of Groningen for discussion and proofreading.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiaobing Wang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Zhu, Y., Dou, W. et al. Stimulus-responsive water soluble synthetic nanographene. Sci. China Chem. (2021). https://doi.org/10.1007/s11426-020-9916-7

Download citation

  • synthetic nanographene
  • atomically precise
  • thermoresponsive
  • photoresponsive
  • LCST
  • photothermal effect