Abstract
A simple ammonium iodide salt in amide solvent catalyzes regioselective decarboxylative alkylation of C(sp3)-H bonds of N-aryl glycine derivatives, of C(sp2)-H bond of heteroarenes, and cascade radical addition to unsaturated bond followed by intramolecular addition to arene, with a broad scope of N-hydroxyphthalimide derived redox active esters under visible light irradiation. The reactions are suggested to proceed through photoactivation of a transiently assembled chromophore from electron-deficient phthalimide moiety and iodide anion through an anion-π interaction in solvent cage followed by diffusion to generate solvated free radical species to react with C-H substrates The simplicity, practicality, and broad substrate scope of this method highlight the synthetic power of photocatalysis through transiently assembled chromophore, and will hopefully inspire further developments of low cost photocatalysis based on various non-covalent interactions, which are prevalent in supramolecular chemistry and biosystems, for sustainable organic synthesis.

This is a preview of subscription content, access via your institution.
References
- 1
Hilinski EF, Masnovi JM, Amatore C, Kochi JK, Rentzepis PM. J Am Chem Soc, 1983, 105: 6167–6168
- 2
Foster R. J Phys Chem, 1980, 84: 2135–2141
- 3
Yuan Y, Majumder S, Yang M, Guo S. Tetrahedron Lett, 2020, 61: 151506
- 4
Deronzier A. Tetrahedron Lett, 1984, 25: 2867–2868
- 5
Hubig SM, Bockman TM, Kochi JK. J Am Chem Soc, 1996, 118: 3842–3851
- 6
Mori T, Inoue Y. Chem Soc Rev, 2013, 42: 8122–8133
- 7
Hu RB, Sun S, Su Y. Angew Chem Int Ed, 2017, 56: 10877–10880
- 8
Cao ZY, Ghosh T, Melchiorre P. Nat Commun, 2018, 9: 3274–3284
- 9
Mulliken RS. J Phys Chem, 1952, 56: 801–822
- 10
Crisenza GEM, Mazzarella D, Melchiorre P. J Am Chem Soc, 2020, 142: 5461–5476
- 11
Morack T, Mück-Lichtenfeld C, Gilmour R. Angew Chem Int Ed, 2019, 58: 1208–1212
- 12
Wu J, Grant PS, Li X, Noble A, Aggarwal VK. Angew Chem Int Ed, 2019, 58: 5697–5701
- 13
Bosque I, Bach T. ACS Catal, 2019, 9: 9103–9109
- 14
Fu MC, Shang R, Zhao B, Wang B, Fu Y. Science, 2019, 363: 1429–1434
- 15
Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363
- 16
Romero NA, Nicewicz DA. Chem Rev, 2016, 116: 10075–10166
- 17
Skubi KL, Blum TR, Yoon TP. Chem Rev, 2016, 116: 10035–10074
- 18
Gould IR, Moody R, Farid S. J Am Chem Soc, 1988, 110: 7242–7244
- 19
Lima CGS, de M. Lima T, Duarte M, Jurberg ID, Paixão MW. ACS Catal, 2016, 6: 1389–1407
- 20
Kochi JK, Carlson R, Ragnarsson U, Ericsson T, Yamada H, Langström B, Tokii T. Acta Chem Scand, 1990, 44: 409–432
- 21
Okada K, Okamoto K, Oda M. J Am Chem Soc, 1988, 110: 8736–8738
- 22
Rosokha SV, Kochi JK. Acc Chem Res, 2008, 41: 641–653
- 23
Schottel BL, Chifotides HT, Dunbar KR. Chem Soc Rev, 2008, 37: 68–83
- 24
Troian-Gautier L, Turlington MD, Wehlin SAM, Maurer AB, Brady MD, Swords WB, Meyer GJ. Chem Rev, 2019, 119: 4628–4683
- 25
Wang C, Guo M, Qi R, Shang Q, Liu Q, Wang S, Zhao L, Wang R, Xu Z. Angew Chem Int Ed, 2018, 57: 15841–15846
- 26
Wang C, Qi R, Xue H, Shen Y, Chang M, Chen Y, Wang R, Xu Z. Angew Chem Int Ed, 2020, 59: 7461–7466
- 27
Wang GZ, Shang R, Fu Y. Synthesis, 2018, 50: 2908–2914
- 28
Miyabe H, Asada R, Toyoda A, Takemoto Y. Angew Chem Int Ed, 2006, 45: 5863–5866
- 29
Yu X, Chen J, Wang P, Yang M, Liang D, Xiao W. Angew Chem Int Ed, 2018, 57: 738–743
- 30
Kepler S, Zeller M, Rosokha SV. J Am Chem Soc, 2019, 141: 9338–9348
- 31
Zheng C, Wang GZ, Shang R. Adv Synth Catal, 2019, 361: 4500–4505
- 32
Studer A, Curran DP. Nat Chem, 2014, 6: 765–773
- 33
Cismesia MA, Yoon TP. Chem Sci, 2015, 6: 5426–5434
- 34
Wang GZ, Shang R, Cheng WM, Fu Y. J Am Chem Soc, 2017, 139: 18307–18312
- 35
Cheng WM, Shang R, Fu Y. Nat Commun, 2018, 9: 5215–5223
- 36
Cheng WM, Shang R, Fu Y. ACS Catal, 2017, 7: 907–911
- 37
Tian WF, Hu CH, He KH, He XY, Li Y. Org Lett, 2019, 21: 6930–6935
- 38
Wang GZ, Shang R, Fu Y. Org Lett, 2018, 20: 888–891
- 39
Wang YT, Fu MC, Zhao B, Shang R, Fu Y. Chem Commun, 2020, 56: 2495–2498
- 40
Xie J, Xu P, Li H, Xue Q, Jin H, Cheng Y, Zhu C. Chem Commun, 2013, 49: 5672–5674
- 41
Jin Y, Jiang M, Wang H, Fu H. Sci Rep, 2016, 6: 20068
Acknowledgements
This work was supported by the National Natural Science Foundation of China (GG2065010002) and KY (2060000119). G.Z.W. thanks for the support from the Fundamental Research Funds for the Central Universities (WK2060120003) and Anhui Provincial Natural Science Foundation (1908085QB53).
Author information
Affiliations
Corresponding author
Additional information
Conflict of interest
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Wang, GZ., Fu, MC., Zhao, B. et al. Photocatalytic decarboxylative alkylations of C(sp3)-H and C(sp2)-H bonds enabled by ammonium iodide in amide solvent. Sci. China Chem. 64, 439–444 (2021). https://doi.org/10.1007/s11426-020-9905-1
Received:
Accepted:
Published:
Issue Date:
- decarboxylative alkylation
- transiently assembled chromophore
- anion-π interaction
- ammonium iodide
- solvent cage