Photocatalytic decarboxylative alkylations of C(sp3)-H and C(sp2)-H bonds enabled by ammonium iodide in amide solvent


A simple ammonium iodide salt in amide solvent catalyzes regioselective decarboxylative alkylation of C(sp3)-H bonds of N-aryl glycine derivatives, of C(sp2)-H bond of heteroarenes, and cascade radical addition to unsaturated bond followed by intramolecular addition to arene, with a broad scope of N-hydroxyphthalimide derived redox active esters under visible light irradiation. The reactions are suggested to proceed through photoactivation of a transiently assembled chromophore from electron-deficient phthalimide moiety and iodide anion through an anion-π interaction in solvent cage followed by diffusion to generate solvated free radical species to react with C-H substrates The simplicity, practicality, and broad substrate scope of this method highlight the synthetic power of photocatalysis through transiently assembled chromophore, and will hopefully inspire further developments of low cost photocatalysis based on various non-covalent interactions, which are prevalent in supramolecular chemistry and biosystems, for sustainable organic synthesis.

This is a preview of subscription content, access via your institution.


  1. 1

    Hilinski EF, Masnovi JM, Amatore C, Kochi JK, Rentzepis PM. J Am Chem Soc, 1983, 105: 6167–6168

    CAS  Google Scholar 

  2. 2

    Foster R. J Phys Chem, 1980, 84: 2135–2141

    CAS  Google Scholar 

  3. 3

    Yuan Y, Majumder S, Yang M, Guo S. Tetrahedron Lett, 2020, 61: 151506

    CAS  Google Scholar 

  4. 4

    Deronzier A. Tetrahedron Lett, 1984, 25: 2867–2868

    CAS  Google Scholar 

  5. 5

    Hubig SM, Bockman TM, Kochi JK. J Am Chem Soc, 1996, 118: 3842–3851

    CAS  Google Scholar 

  6. 6

    Mori T, Inoue Y. Chem Soc Rev, 2013, 42: 8122–8133

    CAS  PubMed  Google Scholar 

  7. 7

    Hu RB, Sun S, Su Y. Angew Chem Int Ed, 2017, 56: 10877–10880

    CAS  Google Scholar 

  8. 8

    Cao ZY, Ghosh T, Melchiorre P. Nat Commun, 2018, 9: 3274–3284

    PubMed  PubMed Central  Google Scholar 

  9. 9

    Mulliken RS. J Phys Chem, 1952, 56: 801–822

    CAS  Google Scholar 

  10. 10

    Crisenza GEM, Mazzarella D, Melchiorre P. J Am Chem Soc, 2020, 142: 5461–5476

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Morack T, Mück-Lichtenfeld C, Gilmour R. Angew Chem Int Ed, 2019, 58: 1208–1212

    CAS  Google Scholar 

  12. 12

    Wu J, Grant PS, Li X, Noble A, Aggarwal VK. Angew Chem Int Ed, 2019, 58: 5697–5701

    CAS  Google Scholar 

  13. 13

    Bosque I, Bach T. ACS Catal, 2019, 9: 9103–9109

    CAS  Google Scholar 

  14. 14

    Fu MC, Shang R, Zhao B, Wang B, Fu Y. Science, 2019, 363: 1429–1434

    CAS  PubMed  Google Scholar 

  15. 15

    Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Romero NA, Nicewicz DA. Chem Rev, 2016, 116: 10075–10166

    CAS  PubMed  Google Scholar 

  17. 17

    Skubi KL, Blum TR, Yoon TP. Chem Rev, 2016, 116: 10035–10074

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Gould IR, Moody R, Farid S. J Am Chem Soc, 1988, 110: 7242–7244

    CAS  Google Scholar 

  19. 19

    Lima CGS, de M. Lima T, Duarte M, Jurberg ID, Paixão MW. ACS Catal, 2016, 6: 1389–1407

    CAS  Google Scholar 

  20. 20

    Kochi JK, Carlson R, Ragnarsson U, Ericsson T, Yamada H, Langström B, Tokii T. Acta Chem Scand, 1990, 44: 409–432

    CAS  Google Scholar 

  21. 21

    Okada K, Okamoto K, Oda M. J Am Chem Soc, 1988, 110: 8736–8738

    CAS  Google Scholar 

  22. 22

    Rosokha SV, Kochi JK. Acc Chem Res, 2008, 41: 641–653

    CAS  PubMed  Google Scholar 

  23. 23

    Schottel BL, Chifotides HT, Dunbar KR. Chem Soc Rev, 2008, 37: 68–83

    CAS  PubMed  Google Scholar 

  24. 24

    Troian-Gautier L, Turlington MD, Wehlin SAM, Maurer AB, Brady MD, Swords WB, Meyer GJ. Chem Rev, 2019, 119: 4628–4683

    CAS  PubMed  Google Scholar 

  25. 25

    Wang C, Guo M, Qi R, Shang Q, Liu Q, Wang S, Zhao L, Wang R, Xu Z. Angew Chem Int Ed, 2018, 57: 15841–15846

    CAS  Google Scholar 

  26. 26

    Wang C, Qi R, Xue H, Shen Y, Chang M, Chen Y, Wang R, Xu Z. Angew Chem Int Ed, 2020, 59: 7461–7466

    CAS  Google Scholar 

  27. 27

    Wang GZ, Shang R, Fu Y. Synthesis, 2018, 50: 2908–2914

    CAS  Google Scholar 

  28. 28

    Miyabe H, Asada R, Toyoda A, Takemoto Y. Angew Chem Int Ed, 2006, 45: 5863–5866

    CAS  Google Scholar 

  29. 29

    Yu X, Chen J, Wang P, Yang M, Liang D, Xiao W. Angew Chem Int Ed, 2018, 57: 738–743

    CAS  Google Scholar 

  30. 30

    Kepler S, Zeller M, Rosokha SV. J Am Chem Soc, 2019, 141: 9338–9348

    PubMed  Google Scholar 

  31. 31

    Zheng C, Wang GZ, Shang R. Adv Synth Catal, 2019, 361: 4500–4505

    CAS  Google Scholar 

  32. 32

    Studer A, Curran DP. Nat Chem, 2014, 6: 765–773

    CAS  PubMed  Google Scholar 

  33. 33

    Cismesia MA, Yoon TP. Chem Sci, 2015, 6: 5426–5434

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Wang GZ, Shang R, Cheng WM, Fu Y. J Am Chem Soc, 2017, 139: 18307–18312

    CAS  PubMed  Google Scholar 

  35. 35

    Cheng WM, Shang R, Fu Y. Nat Commun, 2018, 9: 5215–5223

    PubMed  PubMed Central  Google Scholar 

  36. 36

    Cheng WM, Shang R, Fu Y. ACS Catal, 2017, 7: 907–911

    CAS  Google Scholar 

  37. 37

    Tian WF, Hu CH, He KH, He XY, Li Y. Org Lett, 2019, 21: 6930–6935

    CAS  PubMed  Google Scholar 

  38. 38

    Wang GZ, Shang R, Fu Y. Org Lett, 2018, 20: 888–891

    CAS  PubMed  Google Scholar 

  39. 39

    Wang YT, Fu MC, Zhao B, Shang R, Fu Y. Chem Commun, 2020, 56: 2495–2498

    CAS  Google Scholar 

  40. 40

    Xie J, Xu P, Li H, Xue Q, Jin H, Cheng Y, Zhu C. Chem Commun, 2013, 49: 5672–5674

    CAS  Google Scholar 

  41. 41

    Jin Y, Jiang M, Wang H, Fu H. Sci Rep, 2016, 6: 20068

    PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (GG2065010002) and KY (2060000119). G.Z.W. thanks for the support from the Fundamental Research Funds for the Central Universities (WK2060120003) and Anhui Provincial Natural Science Foundation (1908085QB53).

Author information



Corresponding author

Correspondence to Rui Shang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, GZ., Fu, MC., Zhao, B. et al. Photocatalytic decarboxylative alkylations of C(sp3)-H and C(sp2)-H bonds enabled by ammonium iodide in amide solvent. Sci. China Chem. 64, 439–444 (2021).

Download citation

  • decarboxylative alkylation
  • transiently assembled chromophore
  • anion-π interaction
  • ammonium iodide
  • solvent cage