Electro-oxidation of hydrazine shows marcusian electron transfer kinetics

Abstract

Although hydrazine (N2H4) oxidation in an electrochemical environment has been of great interest for years, its intrinsic electron transfer kinetics remain uncertain. We report that the phenomenological Butler-Volmer (BV) theory is not appropriate for interpreting the process of hydrazine oxidation for which an astonishingly wide range of transfer coefficients, Tafel slopes and diffusion coefficient have been previously reported. Rather Tafel analysis for voltammetry recorded at Glassy Carbon (GC) electrodes reveals a strong potential dependence of the anodic transfer coefficient, consistent with the symmetric Marcus-Hush (sMH) theory. According to the relationship \(\beta = {{\lambda + FE_f^0} \over {2\lambda }} - {F \over {2\lambda }}E\), the reorganization energy (0.35±0.07 eV) and an approximate formal potential of the rate-determining first electron transfer were successfully extracted from the voltammetric responses.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Furst A, Berlo RC, Hooton S. Chem Rev, 1965, 65: 51–68

    CAS  Google Scholar 

  2. 2

    Lu Z, Sun M, Xu T, Li Y, Xu W, Chang Z, Ding Y, Sun X, Jiang L. Adv Mater, 2015, 27: 2361–2366

    CAS  PubMed  Google Scholar 

  3. 3

    Wang T, Wang Q, Wang Y, Da Y, Zhou W, Shao Y, Li D, Zhan S, Yuan J, Wang H. Angew Chem Int Ed, 2019, 58: 13466–13471

    CAS  Google Scholar 

  4. 4

    Feng G, Kuang Y, Li P, Han N, Sun M, Zhang G, Sun X. Adv Sci, 2017, 4: 1600179

    Google Scholar 

  5. 5

    Wang B, Cao X. Electroanalysis, 1992, 4: 719–724

    CAS  Google Scholar 

  6. 6

    Baron R, Šljukić B, Salter C, Crossley A, Compton R. Electroanalysis, 2007, 19: 1062–1068

    CAS  Google Scholar 

  7. 7

    Xiong L, Compton RG. Int J Electrochem Sci, 2014, 9: 7152–7181

    Google Scholar 

  8. 8

    Bruice TC, Bruno JJ, Chou WS. J Am Chem Soc, 1963, 85: 1659–1669

    CAS  Google Scholar 

  9. 9

    Moreno JH, Diamond JM. Nature, 1974, 247: 368–369

    CAS  PubMed  Google Scholar 

  10. 10

    Hayon E, Simic M. J Am Chem Soc, 1972, 94: 42–47

    CAS  Google Scholar 

  11. 11

    Korovin NV, Yanchuk BN. Electrochim Acta, 1970, 15: 569–580

    CAS  Google Scholar 

  12. 12

    Rosca V, Duca M, de Groot MT, Koper MTM. Chem Rev, 2009, 109: 2209–2244

    CAS  PubMed  Google Scholar 

  13. 13

    Kocak CC, Altin A, Aslisen B, Kocak S. Int J Electrochem Sci, 2016, 11: 233–249

    CAS  Google Scholar 

  14. 14

    Maduraiveeran G, Ramaraj R. J Anal Sci Technol, 2017, 8: 1

    Google Scholar 

  15. 15

    Koçak S, Aslışen B. Sens Actuat B-Chem, 2014, 196: 610–618

    Google Scholar 

  16. 16

    Batchelor-McAuley C, Kätelhön E, Barnes EO, Compton RG, Laborda E, Molina A. ChemistryOpen, 2015, 4: 224–260

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Chidsey CED. Science, 1991, 251: 919–922

    CAS  PubMed  Google Scholar 

  18. 18

    Laborda E, Henstridge MC, Batchelor-McAuley C, Compton RG. Chem Soc Rev, 2013, 42: 4894–4905

    CAS  PubMed  Google Scholar 

  19. 19

    Feldberg SW. Anal Chem, 2010, 82: 5176–5183

    CAS  PubMed  Google Scholar 

  20. 20

    Ding Z, Quinn BM, Bard AJ. J Phys Chem B, 2001, 105: 6367–6374

    CAS  Google Scholar 

  21. 21

    Wang Y, Laborda E, Henstridge MC, Martinez-Ortiz F, Molina A, Compton RG. J Electroanal Chem, 2012, 668: 7–12

    CAS  Google Scholar 

  22. 22

    Laborda E, Henstridge MC, Compton RG. J Electroanal Chem, 2012, 667: 48–53

    CAS  Google Scholar 

  23. 23

    Butler JAV. Trans Faraday Soc, 1932, 28: 379

    CAS  Google Scholar 

  24. 24

    Erdey-Grúz T, Volmer M. Z für Physikalische Chem, 1930, 150A: 203

    Google Scholar 

  25. 25

    Bordwell FG, Boyle WJ. J Am Chem Soc, 1972, 94: 3907–3911

    CAS  Google Scholar 

  26. 26

    Formosinho SJ. J Chem Soc Perkin Trans 2, 1987, 61

  27. 27

    Marcus RA. J Chem Phys, 1956, 24: 966–978

    CAS  Google Scholar 

  28. 28

    Eberson L, Gonzalez-Luque R, Lorentzon J, Merchan M, Roos BO. J Am Chem Soc, 1993, 115: 2898–2902

    CAS  Google Scholar 

  29. 29

    Hush NS. J Chem Phys, 1958, 28: 962–972

    CAS  Google Scholar 

  30. 30

    Hush NS. J Electroanal Chem, 1999, 460: 5–29

    CAS  Google Scholar 

  31. 31

    Appleby AJ, Zagal JH. J Solid State Electrochem, 2011, 15: 1811–1832

    CAS  Google Scholar 

  32. 32

    Bai P, Bazant MZ. Nat Commun, 2014, 5: 3585

    PubMed  Google Scholar 

  33. 33

    Laborda E, Henstridge MC, Compton RG. J Electroanal Chem, 2012, 681: 96–102

    CAS  Google Scholar 

  34. 34

    Savéant J-M. Elements of molecular and biomolecular electrochemistry. New Jersey: Willey-VCH, 2006.

    Google Scholar 

  35. 35

    Forster RJ, Faulkner LR. J Am Chem Soc, 1994, 116: 5444–5452

    CAS  Google Scholar 

  36. 36

    Madhiri N, Finklea HO. Langmuir, 2006, 22: 10643–10651

    CAS  PubMed  Google Scholar 

  37. 37

    Kozub BR, Henstridge MC, Batchelor-McAuley C, Compton RG. ChemPhysChem, 2011, 12: 2806–2815

    CAS  PubMed  Google Scholar 

  38. 38

    Henstridge MC, Wang Y, Limon-Petersen JG, Laborda E, Compton RG. Chem Phys Lett, 2011, 517: 29–35

    CAS  Google Scholar 

  39. 39

    Laborda E, Wang Y, Henstridge MC, Martínez-Ortiz F, Molina A, Compton RG. Chem Phys Lett, 2011, 512: 133–137

    CAS  Google Scholar 

  40. 40

    Henstridge MC, Laborda E, Dickinson EJF, Compton RG. J Electroanal Chem, 2012, 664: 73–79

    CAS  Google Scholar 

  41. 41

    Suwatchara D, Rees NV, Henstridge MC, Laborda E, Compton RG. J Electroanal Chem, 2012, 665: 38–44

    CAS  Google Scholar 

  42. 42

    Zeng Y, Bai P, Smith RB, Bazant MZ. J Electroanal Chem, 2015, 748: 52–57

    CAS  Google Scholar 

  43. 43

    Rudolph M, Reddy DP, Feldberg SW. Anal Chem, 1994, 66: 589A–600A

    CAS  Google Scholar 

  44. 44

    Compton RG, Banks CE. Understanding voltammetry. 3rd Edition. London: World Scientific, 2018.

    Google Scholar 

  45. 45

    Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. J Chem Educ, 2018, 95: 197–206

    CAS  Google Scholar 

  46. 46

    Wang Y, Wan Y, Zhang D. Electrochem Commun, 2010, 12: 187–190

    CAS  Google Scholar 

  47. 47

    Li D, Lin C, Batchelor-McAuley C, Chen L, Compton RG. J Electroanal Chem, 2018, 826: 117–124

    CAS  Google Scholar 

  48. 48

    Miao R, Chen L, Shao L, Zhang B, Compton RG. Angew Chem Int Ed, 2019, 58: 12549–12552

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard G. Compton.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miao, R., Chen, L. & Compton, R.G. Electro-oxidation of hydrazine shows marcusian electron transfer kinetics. Sci. China Chem. 64, 322–329 (2021). https://doi.org/10.1007/s11426-020-9889-1

Download citation

  • hydrazine
  • electrode kinetics
  • transfer coefficient
  • Butler-Volmer theory
  • Marcus-Hush theory