High-efficiency all-small-molecule organic solar cells based on an organic molecule donor with an asymmetric thieno[2,3-f] benzofuran unit

Abstract

Two p-type small molecules BDTT-TR and TBFT-TR with benzo[1,2-b′:4,5-b′]dithiophene (BDT) and thieno[2,3-f]benzofuran (TBF) as central core units are synthesized and used as donors in all-small-molecule organic solar cells (all-SMOSCs) with a narrow-bandgap small molecule Y6 (2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo [3,4-e]thieno[2″,3’′:4’,5′]thieno[2′,3′: 4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis (5,6- difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) as the acceptor. In comparison to BDTT-TR with centrosymmetric BDT as the central unit, TBFT-TR with asymmetric TBF as the central unit shows red-shifted absorption, higher charge-carrier mobility and better charge pathway in blend films. The power conversion efficiency (PCE) of the all-SMOSCs based on TBFT-TR:Y6 reaches 14.03% with a higher short-circuit current density of 24.59 mA cm−2 and a higher fill factor of 72.78% compared to the BDTT-TR:Y6 system. The PCE of 14.03% is among the top efficiencies of all-SMOSCs reported in the literature to date.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Sun R, Wu Q, Guo J, Wang T, Wu Y, Qiu B, Luo Z, Yang W, Hu Z, Guo J, Shi M, Yang C, Huang F, Li Y, Min J. Joule, 2020, 4: 407–419

    CAS  Google Scholar 

  2. 2

    Zhou R, Jiang Z, Yang C, Yu J, Feng J, Adil MA, Deng D, Zou W, Zhang J, Lu K, Ma W, Gao F, Wei Z. Nat Commun, 2019, 10: 5393

    PubMed  PubMed Central  Google Scholar 

  3. 3

    Guo J, Bin H, Wang W, Chen B, Guo J, Sun R, Zhang ZG, Jiao X, Li Y, Min J. J Mater Chem A, 2018, 6: 15675–15683

    CAS  Google Scholar 

  4. 4

    Wang W, Sun R, Guo J, Guo J, Min J. Angew Chem Int Ed, 2019, 58: 14556–14561

    CAS  Google Scholar 

  5. 5

    Tang H, Xu T, Yan C, Gao J, Yin H, Lv J, Singh R, Kumar M, Duan T, Kan Z, Lu S, Li G. Adv Sci, 2019, 6: 1901613

    CAS  Google Scholar 

  6. 6

    Chen H, Hu D, Yang Q, Gao J, Fu J, Yang K, He H, Chen S, Kan Z, Duan T, Yang C, Ouyang J, Xiao Z, Sun K, Lu S. Joule, 2019, 3: 3034–3047

    CAS  Google Scholar 

  7. 7

    Wang Y, Wang Y, Kan B, Ke X, Wan X, Li C, Chen Y. Adv Energy Mater, 2018, 8: 1802021

    Google Scholar 

  8. 8

    Kwon OK, Park JH, Kim DW, Park SK, Park SY. Adv Mater, 2015, 27: 1951–1956

    CAS  PubMed  Google Scholar 

  9. 9

    Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Jiang K, Wei Q, Lai JYL, Peng Z, Kim HK, Yuan J, Ye L, Ade H, Zou Y, Yan H. Joule, 2019, 3: 3020–3033

    CAS  Google Scholar 

  11. 11

    Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang JL, Chang SY, Zhang Z, Huang W, Wang R, Meng D, Gao F, Yang Y. Nat Commun, 2019, 10: 570

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537

    CAS  Google Scholar 

  13. 13

    Kan B, Feng H, Yao H, Chang M, Wan X, Li C, Hou J, Chen Y. Sci China Chem, 2018, 61: 1307–1313

    CAS  Google Scholar 

  14. 14

    Zhou Z, Liu W, Zhou G, Zhang M, Qian D, Zhang J, Chen S, Xu S, Yang C, Gao F, Zhu H, Liu F, Zhu X. Adv Mater, 2019, 32: 1906324

    Google Scholar 

  15. 15

    Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872

    Google Scholar 

  16. 16

    Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    CAS  Google Scholar 

  17. 17

    Qin J, An C, Zhang J, Ma K, Yang Y, Zhang T, Li S, Xian K, Cui Y, Tang Y, Ma W, Yao H, Zhang S, Xu B, He C, Hou J. Sci China Mater, 2020, https://doi.org/10.1007/s40843-020-1269-9

    Google Scholar 

  18. 18

    Ge J, Xie L, Peng R, Fanady B, Huang J, Song W, Yan T, Zhang W, Ge Z. Angew Chem Int Ed, 2020, 59: 2808–2815

    CAS  Google Scholar 

  19. 19

    Li ZY, Zhong WK, Ying L, Li N, Liu F, Huang F, Cao Y. Chin J Polym Sci, 2020, 38: 323–331

    CAS  Google Scholar 

  20. 20

    Zhang Z, Wang T, Ding Z, Miao J, Wang J, Dou C, Meng B, Liu J, Wang L. Macromolecules, 2019, 52: 8682–8689

    CAS  Google Scholar 

  21. 21

    Wadsworth A, Hamid Z, Bidwell M, Ashraf RS, Khan JI, Anjum DH, Cendra C, Yan J, Rezasoltani E, Guilbert AAY, Azzouzi M, Gasparini N, Bannock JH, Baran D, Wu H, de Mello JC, Brabec CJ, Salleo A, Nelson J, Laquai F, McCulloch I. Adv Energy Mater, 2018, 8: 1801001

    Google Scholar 

  22. 22

    Luponosov YN, Min J, Solodukhin AN, Bakirov AV, Dmitryakov PV, Shcherbina MA, Peregudova SM, Cherkaev GV, Chvalun SN, Brabec CJ, Ponomarenko SA. J Mater Chem C, 2016, 4: 7061–7076

    CAS  Google Scholar 

  23. 23

    Babics M, Liang RZ, Wang K, Cruciani F, Kan Z, Wohlfahrt M, Tang MC, Laquai F, Beaujuge PM. Chem Mater, 2018, 30: 789–798

    CAS  Google Scholar 

  24. 24

    Yue Q, Wu H, Zhou Z, Zhang M, Liu F, Zhu X. Adv Mater, 2019, 31: 1904283

    CAS  Google Scholar 

  25. 25

    Aarnio H, Sehati P, Braun S, Nyman M, de Jong MP, Fahlman M, Österbacka R. Adv Energy Mater, 2011, 1: 792–797

    CAS  Google Scholar 

  26. 26

    Huo Y, Gong XT, Lau TK, Xiao T, Yan C, Lu X, Lu G, Zhan X, Zhang HL. Chem Mater, 2018, 30: 8661–8668

    CAS  Google Scholar 

  27. 27

    Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha CS, Ree M. Nat Mater, 2006, 5: 197–203

    CAS  Google Scholar 

  28. 28

    Alqahtani O, Babics M, Gorenflot J, Savikhin V, Ferron T, Balawi AH, Paulke A, Kan Z, Pope M, Clulow AJ, Wolf J, Burn PL, Gentle IR, Neher D, Toney MF, Laquai F, Beaujuge PM, Collins BA. Adv Energy Mater, 2018, 8: 1702941

    Google Scholar 

  29. 29

    Wang Z, Zhu L, Shuai Z, Wei Z. Macromol Rapid Commun, 2017, 38: 1700470

    Google Scholar 

  30. 30

    Hoth CN, Choulis SA, Schilinsky P, Brabec CJ. J Mater Chem, 2009, 19: 5398

    CAS  Google Scholar 

  31. 31

    Collins SD, Ran NA, Heiber MC, Nguyen TQ. Adv Energy Mater, 2017, 7: 1602242

    Google Scholar 

  32. 32

    Bin H, Yang Y, Zhang ZG, Ye L, Ghasemi M, Chen S, Zhang Y, Zhang C, Sun C, Xue L, Yang C, Ade H, Li Y. J Am Chem Soc, 2017, 139: 5085–5094

    CAS  PubMed  Google Scholar 

  33. 33

    Wang JL, Liu KK, Yan J, Wu Z, Liu F, Xiao F, Chang ZF, Wu HB, Cao Y, Russell TP. J Am Chem Soc, 2016, 138: 7687–7697

    CAS  PubMed  Google Scholar 

  34. 34

    Yang L, Zhang S, He C, Zhang J, Yang Y, Zhu J, Cui Y, Zhao W, Zhang H, Zhang Y, Wei Z, Hou J. Chem Mater, 2018, 30: 2129–2134

    CAS  Google Scholar 

  35. 35

    Qiu L, Yuan J, He D, Zhang ZG, Li Y, Zou Y. Dyes Pigments, 2017, 140: 337–345

    CAS  Google Scholar 

  36. 36

    He D, Qiu L, Yuan J, Zhang ZG, Li Y, Zou Y. Polymer, 2017, 114: 348–354

    CAS  Google Scholar 

  37. 37

    Fan L, Cui R, Guo X, Qian D, Qiu B, Yuan J, Li Y, Huang W, Yang J, Liu W, Xu X, Li L, Zou Y. J Mater Chem C, 2014, 2: 5651

    CAS  Google Scholar 

  38. 38

    Dou K, Wang X, Du Z, Jiang H, Li F, Sun M, Yang R. J Mater Chem A, 2019, 7: 958–964

    CAS  Google Scholar 

  39. 39

    Min J, Cui C, Heumueller T, Fladischer S, Cheng X, Spiecker E, Li Y, Brabec CJ. Adv Energy Mater, 2016, 6: 1600515

    Google Scholar 

  40. 40

    Cui C, Guo X, Min J, Guo B, Cheng X, Zhang M, Brabec CJ, Li Y. Adv Mater, 2015, 27: 7469–7475

    CAS  PubMed  Google Scholar 

  41. 41

    Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    CAS  Google Scholar 

  42. 42

    Wei G, Wang S, Sun K, Thompson ME, Forrest SR. Adv Energy Mater, 2011, 1: 184–187

    CAS  Google Scholar 

  43. 43

    Gao W, Zhang M, Liu T, Ming R, An Q, Wu K, Xie D, Luo Z, Zhong C, Liu F, Zhang F, Yan H, Yang C. Adv Mater, 2018, 30: 1800052

    Google Scholar 

  44. 44

    Gao W, Liu T, Zhong C, Zhang G, Zhang Y, Ming R, Zhang L, Xin J, Wu K, Guo Y, Ma W, Yan H, Liu Y, Yang C. ACS Energy Lett, 2018, 3: 1760–1768

    CAS  Google Scholar 

  45. 45

    Li Z’, Zhu Z, Chueh CC, Jo SB, Luo J, Jang SH, Jen AKY. J Am Chem Soc, 2016, 138: 11833–11839

    CAS  PubMed  Google Scholar 

  46. 46

    Wang T, Sun R, Xu S, Guo J, Wang W, Guo J, Jiao X, Wang J, Jia S, Zhu X, Li Y, Min J. J Mater Chem A, 2019, 7: 14070–14078

    CAS  Google Scholar 

  47. 47

    Luo Z, Sun R, Zhong C, Liu T, Zhang G, Zou Y, Jiao X, Min J, Yang C. Sci China Chem, 2020, 63: 361–369

    CAS  Google Scholar 

  48. 48

    Min J, Luponosov YN, Gasparini N, Richter M, Bakirov AV, Shcherbina MA, Chvalun SN, Grodd L, Grigorian S, Ameri T, Ponomarenko SA, Brabec CJ. Adv Energy Mater, 2015, 5: 1500386

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21702154, 51773157), the Fundamental Research Funds for the Central Universities and the Opening Project of Key Laboratory of Materials Processing and Mold and Beijing National Laboratory for Molecular Sciences (BNLMS201905).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jie Min.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Wu, Y., Guo, J. et al. High-efficiency all-small-molecule organic solar cells based on an organic molecule donor with an asymmetric thieno[2,3-f] benzofuran unit. Sci. China Chem. 63, 1246–1255 (2020). https://doi.org/10.1007/s11426-020-9753-x

Download citation

Keywords

  • thieno[2,3-f]benzofuran unit
  • small molecule donor
  • all-small-molecule system
  • absorption coefficient
  • crystallinity