Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency


Optimizing the components and morphology within the photoactive layer of organic solar cells (OSCs) can significantly enhance their power conversion efficiency (PCE). A new A-D-A type non-fullerene acceptor IDMIC-4F is designed and synthesized in this work, and is employed as the third component to prepare high performance ternary solar cells. IDMIC-4F can form fibrils after solution casting, and the presence of this fibrillar structure in the PBDB-T-2F:BTP-4F host confines the growth of donors and acceptors into fine domains, as well as acting as transport channels to enhance electron mobility. Single junction ternary devices incorporating 10 wt% IDMIC-4F exhibit enhanced light absorption and balanced carrier mobility, and achieve a maximum PCE of 16.6% compared to 15.7% for the binary device, which is a remarkable efficiency for OSCs reported in literature. This non-fullerene acceptor fibril network strategy is a promising method to improve the photovoltaic performance of ternary OSCs.

This is a preview of subscription content, access via your institution.


  1. 1

    Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161

    CAS  Google Scholar 

  2. 2

    Cheng P, Wang R, Zhu J, Huang W, Chang SY, Meng L, Sun P, Cheng HW, Qin M, Zhu C, Zhan X, Yang Y. Adv Mater, 2018, 30: 1705243

    Google Scholar 

  3. 3

    Heeger AJ. Adv Mater, 2014, 26: 10–28

    CAS  PubMed  Google Scholar 

  4. 4

    Fu H, Wang Z, Sun Y. Angew Chem Int Ed, 2019, 58: 4442–4453

    CAS  Google Scholar 

  5. 5

    Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    CAS  PubMed  Google Scholar 

  6. 6

    Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    CAS  PubMed  Google Scholar 

  7. 7

    Li W, Chen M, Cai J, Spooner ELK, Zhang H, Gurney RS, Liu D, Xiao Z, Lidzey DG, Ding L, Wang T. Joule, 2019, 3: 819–833

    CAS  Google Scholar 

  8. 8

    Yan Y, Li W, Cai J, Chen M, Mao Y, Chen X, Gurney RS, Liu D, Huang F, Wang T. Mater Chem Front, 2018, 2: 1859–1865

    CAS  Google Scholar 

  9. 9

    Bai Y, Zhao C, Chen X, Zhang S, Zhang S, Hayat T, Alsaedi A, Tan Z, Hou J, Li Y. J Mater Chem A, 2019, 7: 15887–15894

    CAS  Google Scholar 

  10. 10

    Wang Y, Lan W, Li N, Lan Z, Li Z, Jia J, Zhu F. Adv Energy Mater, 2019, 9: 1900157

    Google Scholar 

  11. 11

    Li M, Gao K, Wan X, Zhang Q, Kan B, Xia R, Liu F, Yang X, Feng H, Ni W, Wang Y, Peng J, Zhang H, Liang Z, Yip HL, Peng X, Cao Y, Chen Y. Nat Photon, 2017, 11: 85–90

    CAS  Google Scholar 

  12. 12

    Yan Y, Li W, Cai JL, Chen MX, Mao YC, Chen XL, Gurney RS, Liu D, Huang F, Wang T. Mater Chem Front, 2018, 2: 1859–1865

    CAS  Google Scholar 

  13. 13

    Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    CAS  Google Scholar 

  15. 15

    Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872

    Google Scholar 

  16. 16

    Yan T, Song W, Huang J, Peng R, Huang L, Ge Z. Adv Mater, 2019, 31: 1902210

    Google Scholar 

  17. 17

    Lin Y, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X, Yarali E, Seitkhan A, Bakr OM, El- Labban A, Schwingenschlögl U, Tung V, McCulloch I, Laquai F, Anthopoulos TD. Adv Mater, 2019, 31: 1902965

    CAS  Google Scholar 

  18. 18

    Li K, Wu Y, Tang Y, Pan M, Ma W, Fu H, Zhan C, Yao J. Adv Energy Mater, 2019, 9: 1901728

    Google Scholar 

  19. 19

    Li X, Pan F, Sun C, Zhang M, Wang Z, Du J, Wang J, Xiao M, Xue L, Zhang ZG, Zhang C, Liu F, Li Y. Nat Commun, 2019, 10: 519

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Li Z, Jiang K, Yang G, Lai JYL, Ma T, Zhao J, Ma W, Yan H. Nat Commun, 2016, 7: 13094

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y. Sci China Chem, 2019,

    Google Scholar 

  22. 22

    Xie Y, Huo L, Fan B, Fu H, Cai Y, Zhang L, Li Z, Wang Y, Ma W, Chen Y, Sun Y. Adv Funct Mater, 2018, 28: 1800627

    Google Scholar 

  23. 23

    Ye L, Xie Y, Weng K, Ryu HS, Li C, Cai Y, Fu H, Wei D, Woo HY, Tan S, Sun Y. Nano Energy, 2019, 58: 220–226

    CAS  Google Scholar 

  24. 24

    An Q, Ma X, Gao J, Zhang F. Sci Bull, 2019, 64: 504–506

    CAS  Google Scholar 

  25. 25

    Chang Y, Lau TK, Pan MA, Lu X, Yan H, Zhan C. Mater Horiz, 2019, 6: 2094–2102

    CAS  Google Scholar 

  26. 26

    Zhou Z, Xu S, Song J, Jin Y, Yue Q, Qian Y, Liu F, Zhang F, Zhu X. Nat Energy, 2018, 3: 952–959

    CAS  Google Scholar 

  27. 27

    Li H, Lu K, Wei Z. Adv Energy Mater, 2017, 7: 1602540

    Google Scholar 

  28. 28

    Bi P, Hao X. Sol RRL, 2019, 3: 1800263

    Google Scholar 

  29. 29

    Dayneko SV, Hendsbee AD, Cann JR, Cabanetos C, Welch GC. New J Chem, 2019, 43: 10442–10448

    CAS  Google Scholar 

  30. 30

    Gasparini N, Lucera L, Salvador M, Prosa M, Spyropoulos GD, Kubis P, Egelhaaf HJ, Brabec CJ, Ameri T. Energy Environ Sci, 2017, 10: 885–892

    CAS  Google Scholar 

  31. 31

    Ma X, Mi Y, Zhang F, An Q, Zhang M, Hu Z, Liu X, Zhang J, Tang W. Adv Energy Mater, 2018, 8: 1702854

    Google Scholar 

  32. 32

    Su D, Pan MA, Liu Z, Lau TK, Li X, Shen F, Huo S, Lu X, Xu A, Yan H, Zhan C. Chem Mater, 2019, 31: 8908–8917

    CAS  Google Scholar 

  33. 33

    Chen Y, Ye P, Jia X, Gu W, Xu X, Wu X, Wu J, Liu F, Zhu ZG, Huang H. J Mater Chem A, 2017, 5: 19697–19702

    CAS  Google Scholar 

  34. 34

    Chen Y, Ye P, Zhu ZG, Wang X, Yang L, Xu X, Wu X, Dong T, Zhang H, Hou J, Liu F, Huang H. Adv Mater, 2017, 29: 1603154

    Google Scholar 

  35. 35

    Gao J, Wang J, An Q, Ma X, Hu Z, Xu C, Zhang X, Zhang F. Sci China Chem, 2020, 63: 83–91

    CAS  Google Scholar 

  36. 36

    Gasparini N, Jiao X, Heumueller T, Baran D, Matt GJ, Fladischer S, Spiecker E, Ade H, Brabec CJ, Ameri T. Nat Energy, 2016, 1: 16118

    CAS  Google Scholar 

  37. 37

    Liu S, You P, Li J, Li J, Lee CS, Ong BS, Surya C, Yan F. Energy Environ Sci, 2015, 8: 1463–1470

    CAS  Google Scholar 

  38. 38

    Zhang M, Gao W, Zhang F, Mi Y, Wang W, An Q, Wang J, Ma X, Miao J, Hu Z, Liu X, Zhang J, Yang C. Energy Environ Sci, 2018, 11: 841–849

    CAS  Google Scholar 

  39. 39

    Liu T, Luo Z, Chen Y, Yang T, Xiao Y, Zhang G, Ma R, Lu X, Zhan C, Zhang M, Yang C, Li Y, Yao J, Yan H. Energy Environ Sci, 2019, 12: 2529–2536

    CAS  Google Scholar 

  40. 40

    Zhang M, Ming R, Gao W, An Q, Ma X, Hu Z, Yang C, Zhang F. Nano Energy, 2019, 59: 58–65

    CAS  Google Scholar 

  41. 41

    Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62: 1562–1564

    CAS  Google Scholar 

  42. 42

    Kan B, Yi YQQ, Wan X, Feng H, Ke X, Wang Y, Li C, Chen Y. Adv Energy Mater, 2018, 8: 1800424

    Google Scholar 

  43. 43

    Kumari T, Lee SM, Kang SH, Chen S, Yang C. Energy Environ Sci, 2017, 10: 258–265

    CAS  Google Scholar 

  44. 44

    Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W. Adv Mater, 2018, 30: 1707150

    Google Scholar 

  45. 45

    Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142

    CAS  Google Scholar 

  46. 46

    Cheng P, Yan C, Wu Y, Wang J, Qin M, An Q, Cao J, Huo L, Zhang F, Ding L, Sun Y, Ma W, Zhan X. Adv Mater, 2016, 28: 8021–8028

    CAS  PubMed  Google Scholar 

  47. 47

    Xie Y, Yang F, Li Y, Uddin MA, Bi P, Fan B, Cai Y, Hao X, Woo HY, Li W, Liu F, Sun Y. Adv Mater, 2018, 30: 1803045

    Google Scholar 

  48. 48

    Yu R, Yao H, Hou J. Adv Energy Mater, 2018, 8: 1702814

    Google Scholar 

  49. 49

    Huang H, Yang L, Sharma B. J Mater Chem A, 2017, 5: 11501–11517

    CAS  Google Scholar 

  50. 50

    Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    CAS  Google Scholar 

  51. 51

    Zhang Y, Yao H, Zhang S, Qin Y, Zhang J, Yang L, Li W, Wei Z, Gao F, Hou J. Sci China Chem, 2018, 61: 1328–1337

    CAS  Google Scholar 

  52. 52

    Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868

    Google Scholar 

  53. 53

    Xia T, Cai Y, Fu H, Sun Y. Sci China Chem, 2019, 62: 662–668

    CAS  Google Scholar 

  54. 54

    Street RA, Davies D, Khlyabich PP, Burkhart B, Thompson BC. J Am Chem Soc, 2013, 135: 986–989

    CAS  PubMed  Google Scholar 

  55. 55

    Khlyabich PP, Burkhart B, Thompson BC. J Am Chem Soc, 2011, 133: 14534–14537

    CAS  PubMed  Google Scholar 

  56. 56

    Khlyabich PP, Rudenko AE, Thompson BC, Loo YL. Adv Funct Mater, 2015, 25: 5557–5563

    CAS  Google Scholar 

  57. 57

    Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537

    CAS  Google Scholar 

  58. 58

    Ye L, Xiong Y, Zhang Q, Li S, Wang C, Jiang Z, Hou J, You W, Ade H. Adv Mater, 2018, 30: 1705485

    Google Scholar 

  59. 59

    Ma W, Yang C, Gong X, Lee K, Heeger AJ. Adv Funct Mater, 2005, 15: 1617–1622

    CAS  Google Scholar 

  60. 60

    Xiao Y, Lu X. Mater Today Nano, 2019, 5: 100030

    Google Scholar 

  61. 61

    Liu T, Huo L, Sun X, Fan B, Cai Y, Kim T, Kim JY, Choi H, Sun Y. Adv Energy Mater, 2016, 6: 1502109

    Google Scholar 

  62. 62

    Lu L, Luo Z, Xu T, Yu L. Nano Lett, 2013, 13: 59–64

    CAS  PubMed  Google Scholar 

Download references


This work was supported by the Natural Science Foundation of Hubei Province of China (2018CFA055), the National Natural Science Foundation of China (21774097) and the 111 project (B18038). All authors thank the beamline BL16B1 at Shanghai Synchrotron Radiation Facility (China) for providing the beam time and help during GISAXS experiment. We also thank the Diamond Light Source (UK) beamline I07 where GIWAXS measurements were performed (via beamtime allocation SI22651-1). We also thank the U.K. EPSRC for funding studentships for R. C.K. (DTG allocation), M.E.O’K. (EP/L016281/1: CDT in Polymers, Soft Matter and Colloids) and J.A.S. (EP/L01551X/1: CDT in New and Sustainable PV).

Author information



Corresponding author

Correspondence to Tao Wang.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, D., Chen, X., Cai, J. et al. Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency. Sci. China Chem. 63, 1461–1468 (2020).

Download citation


  • ternary solar cells
  • non-fullerene acceptor fibrils
  • power conversion efficiency