Skip to main content
Log in

Iodine(III) reagent (ABX—N3)-induced intermolecular anti-Markovnikov hydroazidation of unactivated alkenes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Anti-Markovnikov hydroazidation of unactivated alkenes using ABX2014;N3 as an initiator has been developed at room temperature, wherein hydrogen azide (HN3) acts as both hydrogen and azidating agent. Notably, the HN3 reagent was generated from azidotrimethylsilane (TMSN3) and acetic acid in situ. The reaction itself displays broad substrate scope, good yields and excellent regioselectivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roesky PW, Müller TE. Angew Chem Int Ed, 2003, 42: 2708–2710

    CAS  Google Scholar 

  2. Espino CG, Fiori KW, Kim M, Du Bois J. J Am Chem Soc, 2004, 126: 15378–15379

    CAS  PubMed  Google Scholar 

  3. Utsunomiya M, Hartwig JF. J Am Chem Soc, 2003, 125: 14286–14287

    CAS  PubMed  Google Scholar 

  4. Brice JL, Harang JE, Timokhin VI, Anastasi NR, Stahl SS. J Am Chem Soc, 2005, 127: 2868–2869

    CAS  PubMed  Google Scholar 

  5. Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem Rev, 2008, 108: 3795–3892

    PubMed  Google Scholar 

  6. Huang L, Arndt M, Gooßen K, Heydt H, Gooßen LJ. Chem Rev, 2015, 115: 2596–2697

    CAS  PubMed  Google Scholar 

  7. Bernoud E, Lepori C, Mellah M, Schulz E, Hannedouche J. Catal Sci Technol, 2015, 5: 2017–2037

    CAS  Google Scholar 

  8. Villa M, Jacobi von Wangelin A. Angew Chem Int Ed, 2015, 54: 11906–11908

    CAS  Google Scholar 

  9. Pirnot MT, Wang YM, Buchwald SL. Angew Chem Int Ed, 2016, 55: 48–57

    CAS  Google Scholar 

  10. Michon C, Abadie MA, Medina F, Agbossou-Niedercorn F. J Organomet Chem, 2017, 847: 13–27

    CAS  Google Scholar 

  11. Beller M, Trauthwein H, Eichberger M, Breindl C, Herwig J, Müller TE, Thiel OR. Chem Eur J, 1999, 5: 1306–1319

    CAS  Google Scholar 

  12. Takemiya A, Hartwig JF. J Am Chem Soc, 2006, 128: 6042–6043

    CAS  PubMed  Google Scholar 

  13. Nguyen TM, Nicewicz DA. J Am Chem Soc, 2013, 135: 9588–9591

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Musacchio AJ, Nguyen LQ, Beard GH, Knowles RR. J Am Chem Soc, 2014, 136: 12217–12220

    CAS  PubMed  Google Scholar 

  15. Takaya J, Hartwig JF. J Am Chem Soc, 2005, 127: 5756–5757

    CAS  PubMed  Google Scholar 

  16. Rucker RP, Whittaker AM, Dang H, Lalic G. J Am Chem Soc, 2012, 134: 6571–6574

    CAS  PubMed  Google Scholar 

  17. Zhu S, Buchwald SL. J Am Chem Soc, 2014, 136: 15913–15916

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nguyen TM, Manohar N, Nicewicz DA. Angew Chem Int Ed, 2014, 53: 6198–6201

    CAS  Google Scholar 

  19. Ensign SC, Vanable EP, Kortman GD, Weir LJ, Hull KL. J Am Chem Soc, 2015, 137: 13748–13751

    CAS  PubMed  Google Scholar 

  20. Musacchio AJ, Lainhart BC, Zhang X, Naguib SG, Sherwood TC, Knowles RR. Science, 2017, 355: 727–730

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu Q, Graff DE, Knowles RR. J Am Chem Soc, 2018, 140: 741–747

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lardy SW, Schmidt VA. J Am Chem Soc, 2018, 140: 12318–12322

    CAS  PubMed  Google Scholar 

  23. For recent reviews, see: Wu K, Liang Y, Jiao N. Molecules, 2016, 21: 352

    PubMed  PubMed Central  Google Scholar 

  24. For recent selected examples, see: Fu N, Sauer GS, Saha A, Loo A, Lin S. Science, 2017, 357: 575–579

    CAS  PubMed  Google Scholar 

  25. Peng H, Yuan Z, Chen P, Liu G. Chin J Chem, 2017, 35: 876–880

    CAS  Google Scholar 

  26. Yang B, Lu Z. ACS Catal, 2017, 7: 8362–8365

    CAS  Google Scholar 

  27. Bunescu A, Ha TM, Wang Q, Zhu J. Angew Chem Int Ed, 2017, 56: 10555–10558

    CAS  Google Scholar 

  28. Liu Z, Liu ZQ. Org Lett, 2017, 19: 5649–5652

    CAS  PubMed  Google Scholar 

  29. Cong F, Wei Y, Tang P. Chem Commun, 2018, 54: 4473–4476

    CAS  Google Scholar 

  30. Shen SJ, Zhu CL, Lu DF, Xu H. ACS Catal, 2018, 8: 4473–4482

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang L, Liu S, Zhao Z, Su H, Hao J, Wang Y. Chem Sci, 2018, 9: 6085–6090

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li WY, Wu CS, Wang Z, Luo Y. Chem Commun, 2018, 54: 11013–11016

    CAS  Google Scholar 

  33. Zhang YX, Jin RX, Yin H, Li Y, Wang XS. Org Lett, 2018, 20: 7283–7287

    CAS  PubMed  Google Scholar 

  34. Waser J, Carreira EM. Azides by olefin hydroazidation reactions. In: Bräse S, Banert K, Eds. Organic Azides: Syntheses and Applications. Chichester: John Wiley & Sons, 2010. 95–111

    Google Scholar 

  35. Waser J, Nambu H, Carreira EM. J Am Chem Soc, 2005, 127: 8294–8295

    CAS  PubMed  Google Scholar 

  36. Waser J, Gaspar B, Nambu H, Carreira EM. J Am Chem Soc, 2006, 128: 11693–11712

    CAS  PubMed  Google Scholar 

  37. Va P, Campbell EL, Robertson WM, Boger DL. J Am Chem Soc, 2010, 132: 8489–8495

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Leggans EK, Barker TJ, Duncan KK, Boger DL. Org Lett, 2012, 14: 1428–1431

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lonca GH, Ong DY, Tran TMH, Tejo C, Chiba S, Gagosz F. Angew Chem Int Ed, 2017, 56: 11440–11444

    CAS  Google Scholar 

  40. Kapat A, Konig A, Montermini F, Renaud P. J Am Chem Soc, 2011, 133: 13890–13893

    CAS  PubMed  Google Scholar 

  41. Wang JJ, Yu W. Chem Eur J, 2019, 25: 3510–3514

    CAS  PubMed  Google Scholar 

  42. Wang Y, Li GX, Yang G, He G, Chen G. Chem Sci, 2016, 7: 2679–2683

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Hu X, Morales-Rivera CA, Li GX, Huang X, He G, Liu P, Chen G. J Am Chem Soc, 2018, 140: 9678–9684

    CAS  PubMed  Google Scholar 

  44. Jimeno C, Renaud P. Organic Azides. Hoboken: Wiley-Blackwell, 2010. 239–267

    Google Scholar 

  45. For selected examples of azido radical additions to olefins, see: Minisci F, Galli R, Gazz MC. Chim Ital, 1964, 94: 67–90

    CAS  Google Scholar 

  46. Trahanovsky WS, Robbins MD. J Am Chem Soc, 1971, 93: 5256–5258

    CAS  Google Scholar 

  47. Magnus P, Lacour J, Evans PA, Roe MB, Hulme C. J Am Chem Soc, 1996, 118: 3406–3418

    CAS  Google Scholar 

  48. Matcha K, Narayan R, Antonchick AP. Angew Chem Int Ed, 2013, 52: 7985–7989

    CAS  Google Scholar 

  49. Wei XH, Li YM, Zhou AX, Yang TT, Yang SD. Org Lett, 2013, 15: 4158–4161

    CAS  PubMed  Google Scholar 

  50. Zhang B, Studer A. Org Lett, 2013, 15: 4548–4551

    CAS  PubMed  Google Scholar 

  51. Li Z, Zhang C, Zhu L, Liu C, Li C. Org Chem Front, 2014, 1: 100–104

    CAS  Google Scholar 

  52. Yin H, Wang T, Jiao N. Org Lett, 2014, 16: 2302–2305

    CAS  PubMed  Google Scholar 

  53. Zhu L, Yu H, Xu Z, Jiang X, Lin L, Wang R. Org Lett, 2014, 16: 1562–1565

    CAS  PubMed  Google Scholar 

  54. Su H, Li W, Xuan Z, Yu W. Adv Synth Catal, 2015, 357: 64–70

    CAS  Google Scholar 

  55. Sun X, Li X, Song S, Zhu Y, Liang YF, Jiao N. J Am Chem Soc, 2015, 137: 6059–6066

    CAS  PubMed  Google Scholar 

  56. Valiulin RA, Mamidyala S, Finn MG. J Org Chem, 2015, 80: 2740–2755

    CAS  PubMed  Google Scholar 

  57. Zhu R, Buchwald SL. J Am Chem Soc, 2015, 137: 8069–8077

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yuan YA, Lu DF, Chen YR, Xu H. Angew Chem Int Ed, 2016, 55: 534–538

    CAS  Google Scholar 

  59. During the investigating substrate scope of the reaction, Xu and co-workers reported a similar reaction. For details, see: Li H, Shen SJ, Zhu CL, Xu H. J Am Chem Soc, 2019, 141: 9415–9421

    PubMed  Google Scholar 

  60. It should be noted that HN3 generated in situ is a highly toxic and dangerously explosive reagent. Thus, once reaction completed, a strong base NaOH should be added to quench it before the sequential workup procedure.

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973-2015CB856600), the National Natural Science Foundation of China (21532009, 21821002, 21790330, 21761142010), the Science and Technology Commission of Shanghai Municipality (17XD1404500, 17QA1405200, 17JC1401200), the strategic Priority Research Program (XDB20000000) and the Key Research Program of Frontier Science (QYZDJSSW-SLH055) of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosheng Liu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, P. & Liu, G. Iodine(III) reagent (ABX—N3)-induced intermolecular anti-Markovnikov hydroazidation of unactivated alkenes. Sci. China Chem. 62, 1537–1541 (2019). https://doi.org/10.1007/s11426-019-9628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9628-9

Keywords

Navigation