Skip to main content
Log in

Cu/chiral phosphoric acid-catalyzed radical-initiated asymmetric aminosilylation of alkene with hydrosilane

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The catalytic radical-initiated asymmetric 1,2-aminosilylation of alkene with a hydrosilane under Cu(I)/CPA cooperative catalysis has been developed. This method features the use of hydrosilane as the reductive radical precursor, enabling efficient access to skeletally diverse silicon-containing azaheterocycles including pyrrolidine, indoline and isoindoline bearing an α-tertiary stereocenter with high enantioselectivity. The key to the success includes the use of Cu(I)/CPA cooperative catalyst system and the β-silicon effect of the silyl group to stabilize the in situ generated carbocation intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For reviews on silicon chemistry, see: (a) Ojima I. The chemi. In: Patai S, Rappoport Z, Eds. The Chemistry of Organic Silicon Compounds. Volume 2. New York: Wiley, 1989

  2. Steinmetz MG. Chem Rev, 1995, 95: 1527–1588

    Article  CAS  Google Scholar 

  3. Weidenbruch M. Chem Rev, 1995, 95: 1479–1493

    Article  CAS  Google Scholar 

  4. Luh TY, Liu ST. Synthetic applications of allylsilanes and vinylsilanes. In: Rappoport Z, Apeloig Y, Eds. The Chemistry of Organic Silicon Compounds. Volume 2. Chichester: Wiley, 1998, 1793–1868

    Article  Google Scholar 

  5. Brook MA. Silicon in Organic, Organometallic and Polymer Chemistry. New York: John Wiley & Sons, 2000

    Google Scholar 

  6. Denmark SE, Sweis RF. Acc Chem Res, 2002, 35: 835–846

    Article  CAS  PubMed  Google Scholar 

  7. Hiyama T, Shirakawa E. Organosilicon compounds. In: Miyaura N, Ed. Cross-Coupling Reactions. Volume 219: Topics in Current Chemistry. Berlin Heidelberg: Springer, 2002. 61–85

    Chapter  Google Scholar 

  8. Marciniec B. Coord Chem Rev, 2005, 249: 2374–2390

    Article  CAS  Google Scholar 

  9. Sore HF, Galloway WRJD, Spring DR. Chem Soc Rev, 2012, 41: 1845–1866

    Article  CAS  PubMed  Google Scholar 

  10. Cheng C, Hartwig JF. Chem Rev, 2015, 115: 8946–8975

    Article  CAS  PubMed  Google Scholar 

  11. Bähr S, Xue W, Oestreich M. ACS Catal, 2019, 9: 16–24

    Article  CAS  Google Scholar 

  12. For reviews on silyl radical reactions, see: (a) Chatgilialoglu C. Acc Chem Res, 1992, 25: 188–194

    Article  CAS  Google Scholar 

  13. Chatgilialoglu C. Chem Rev, 1995, 95: 1229–1251

    Article  CAS  Google Scholar 

  14. Chatgilialoglu C, Schiesser CH. Silyl radicals. In: Rappoport Z, Apeloig Y, Eds. The Chemistry of Organic Silicon Compounds. Volume 3. New York: John Wiley & Sons, 2001. 341–390

    Chapter  Google Scholar 

  15. Chatgilialoglu C, Timokhin VI. Adv Organomet Chem, 2008, 57: 117–181

    Article  CAS  Google Scholar 

  16. Shang X, Liu ZQ. Org Biomol Chem, 2016, 14: 7829–7831

    Article  CAS  PubMed  Google Scholar 

  17. Chatgilialoglu C, Ferreri C, Landais Y, Timokhin VI. Chem Rev, 2018, 118: 6516–6572

    Article  CAS  PubMed  Google Scholar 

  18. For selected recent reviews, see: (a) Hata S, Sibi MP. Stereoselective reactions of carbon-carbon double bonds. In: de Vries JG, Molander GA, Evans PA, Eds. Science of Synthesis Stereoselective Synthesis. Volume 1. Stuttgart: Georg Thieme, 2011. 873–922

    Google Scholar 

  19. Egami H, Sodeoka M. Angew Chem Int Ed, 2014, 53: 8294–8308

    Article  CAS  Google Scholar 

  20. Merino E, Nevado C. Chem Soc Rev, 2014, 43: 6598–6608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Charpentier J, Früh N, Togni A. Chem Rev, 2015, 115: 650–682

    Article  CAS  PubMed  Google Scholar 

  22. Plesniak MP, Huang HM, Procter DJ. Nat Rev Chem, 2017, 1: 0077

    Article  CAS  Google Scholar 

  23. Wang X, Studer A. Acc Chem Res, 2017, 50: 1712–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang F, Chen P, Liu G. Acc Chem Res, 2018, 51: 2036–2046

    Article  CAS  PubMed  Google Scholar 

  25. Tian Y, Chen S, Gu QS, Lin JS, Liu XY. Tetrahedron Lett, 2018, 59: 203–215

    Article  CAS  Google Scholar 

  26. For selected recent examples, see: (a) Amrein S, Timmermann A, Studer A. Org Lett, 2001, 3: 2357–2360

    Article  CAS  PubMed  Google Scholar 

  27. Tayama O, Iwahama T, Sakaguchi S, Ishii Y. Eur J Org Chem, 2003, 2003(12): 2286–2289

    Article  CAS  Google Scholar 

  28. Wang L, Zhu H, Guo S, Cheng J, Yu JT. Chem Commun, 2014, 50: 10864–10867

    Article  CAS  Google Scholar 

  29. Zhang L, Liu D, Liu ZQ. Org Lett, 2015, 17: 2534–2537

    Article  CAS  PubMed  Google Scholar 

  30. Peng H, Yu JT, Jiang Y, Cheng J. Org Biomol Chem, 2015, 13: 10299–10302

    Article  CAS  PubMed  Google Scholar 

  31. Leifert D, Studer A. Org Lett, 2015, 17: 386–389

    Article  CAS  PubMed  Google Scholar 

  32. Xu L, Zhang S, Li P. Org Chem Front, 2015, 2: 459–463

    Article  CAS  Google Scholar 

  33. Zhang L, Hang Z, Liu ZQ. Angew Chem Int Ed, 2016, 55: 236–239

    Article  CAS  Google Scholar 

  34. Gu J, Cai C. Chem Commun, 2016, 52: 10779–10782

    Article  CAS  Google Scholar 

  35. Gao P, Zhang W, Zhang Z. Org Lett, 2016, 18: 5820–5823

    Article  CAS  PubMed  Google Scholar 

  36. Yang Y, Song RJ, Ouyang XH, Wang CY, Li JH, Luo S. Angew Chem Int Ed, 2017, 56: 7916–7919

    Article  CAS  Google Scholar 

  37. Lan Y, Chang XH, Fan P, Shan CC, Liu ZB, Loh TP, Xu YH. ACS Catal, 2017, 7: 7120–7125

    Article  CAS  Google Scholar 

  38. Zhou R, Goh YY, Liu H, Tao H, Li L, Wu J. Angew Chem Int Ed, 2017, 56: 16621–16625

    Article  CAS  Google Scholar 

  39. Hou J, Ee A, Cao H, Ong HW, Xu JH, Wu J. Angew Chem Int Ed, 2018, 57: 17220–17224

    Article  CAS  Google Scholar 

  40. For selected reviews of asymmetric radical reactions, see: (a) Sibi MP, Manyem S, Zimmerman J. Chem Rev, 2003, 103: 3263–3296

    Article  CAS  PubMed  Google Scholar 

  41. Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cui X, Zhang XP. Cobalt-mediated carbene transfer reactions. In: Moss RA, Doyle MP, Eds. Contemporary Carbene Chemistry. New York: John Wiley & Sons, 2013. 491–525

    Chapter  Google Scholar 

  43. Zhang L, Meggers E. Acc Chem Res, 2017, 50: 320–330

    Article  CAS  PubMed  Google Scholar 

  44. Lu Q, Glorius F. Angew Chem Int Ed, 2017, 56: 49–51

    Article  CAS  Google Scholar 

  45. Wang K, Kong W. Chin J Chem, 2018, 36: 247–256

    Article  CAS  Google Scholar 

  46. For selected reviews, see: (a) Cherney AH, Kadunce NT, Reisman SE. Chem Rev, 2015, 115: 9587–9652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choi J, Fu GC. Science, 2017, 356: eaaf7230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Fu GC. ACS Cent Sci, 2017, 3: 692–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arp FO, Fu GC. J Am Chem Soc, 2005, 127: 10482–10483

    Article  CAS  PubMed  Google Scholar 

  50. Binder JT, Cordier CJ, Fu GC. J Am Chem Soc, 2012, 134: 17003–17006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi J, Fu GC. J Am Chem Soc, 2012, 134: 9102–9105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cherney AH, Kadunce NT, Reisman SE. J Am Chem Soc, 2013, 135: 7442–7445

    Article  CAS  PubMed  Google Scholar 

  53. Mao J, Liu F, Wang M, Wu L, Zheng B, Liu S, Zhong J, Bian Q, Walsh PJ. J Am Chem Soc, 2014, 136: 17662–17668

    Article  CAS  PubMed  Google Scholar 

  54. Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. J Am Chem Soc, 2015, 137: 4896–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jin M, Adak L, Nakamura M. J Am Chem Soc, 2015, 137: 7128–7134

    Article  CAS  PubMed  Google Scholar 

  56. Liang Y, Fu GC. J Am Chem Soc, 2015, 137: 9523–9526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science, 2016, 351: 681–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schmidt J, Choi J, Liu AT, Slusarczyk M, Fu GC. Science, 2016, 354: 1265–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science, 2016, 353: 1014–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu R, Buchwald SL. Angew Chem Int Ed, 2013, 52: 12655–12658

    Article  CAS  Google Scholar 

  61. Zhu R, Buchwald SL. J Am Chem Soc, 2015, 137: 8069–8077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang F, Wang D, Wan X, Wu L, Chen P, Liu G. J Am Chem Soc, 2016, 138: 15547–15550

    Article  CAS  PubMed  Google Scholar 

  63. Wang D, Wang F, Chen P, Lin Z, Liu G. Angew Chem Int Ed, 2017, 56: 2054–2058

    Article  CAS  Google Scholar 

  64. Wu L, Wang F, Wan X, Wang D, Chen P, Liu G. J Am Chem Soc, 2017, 139: 2904–2907

    Article  CAS  PubMed  Google Scholar 

  65. Wang D, Wu L, Wang F, Wan X, Chen P, Lin Z, Liu G. J Am Chem Soc, 2017, 139: 6811–6814

    Article  CAS  PubMed  Google Scholar 

  66. Fu L, Zhou S, Wan X, Chen P, Liu G. J Am Chem Soc, 2018, 140: 10965–10969

    Article  CAS  PubMed  Google Scholar 

  67. For a recent highlight on asymmetric radical reactions, see: (a) Zhang X, You SL. Chem, 2017, 3: 919–921

    Article  CAS  Google Scholar 

  68. Lin JS, Dong XY, Li TT, Jiang NC, Tan B, Liu XY. J Am Chem Soc, 2016, 138: 9357–9360

    Article  CAS  PubMed  Google Scholar 

  69. Cheng YF, Dong XY, Gu QS, Yu ZL, Liu XY. Angew Chem Int Ed, 2017, 56: 8883–8886

    Article  CAS  Google Scholar 

  70. Lin JS, Wang FL, Dong XY, He WW, Yuan Y, Chen S, Liu XY. Nat Commun, 2017, 8: 14841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wang FL, Dong XY, Lin JS, Zeng Y, Jiao GY, Gu QS, Guo XQ, Ma CL, Liu XY. Chem, 2017, 3: 979–990

    Article  CAS  Google Scholar 

  72. Li XT, Gu QS, Dong XY, Meng X, Liu XY. Angew Chem Int Ed, 2018, 57: 7668–7672

    Article  CAS  Google Scholar 

  73. Ye L, Gu QS, Tian Y, Meng X, Chen GC, Liu XY. Nat Commun, 2018, 9: 227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Lin JS, Li TT, Liu JR, Jiao GY, Gu QS, Cheng JT, Guo YL, Hong X, Liu XY. J Am Chem Soc, 2019, 141: 1074–1083

    Article  CAS  PubMed  Google Scholar 

  75. Wierschke SG, Chandrasekhar J, Jorgensen WL. J Am Chem Soc, 1985, 107: 1496–1500

    Article  CAS  Google Scholar 

  76. For selected recent reviews on the use of CPA as organocatalysis and anions, see: (a) Akiyama T. Chem Rev, 2007, 107: 5744–5758

    Article  CAS  PubMed  Google Scholar 

  77. Terada M. Chem Commun, 2008, 348: 4097–4112

    Article  CAS  Google Scholar 

  78. You SL, Cai Q, Zeng M. Chem Soc Rev, 2009, 38: 2190–2201

    Article  CAS  PubMed  Google Scholar 

  79. Terada M. Synthesis, 2010, 2010(12): 1929–1982

    Article  CAS  Google Scholar 

  80. Yu J, Shi F, Gong LZ. Acc Chem Res, 2011, 44: 1156–1171

    Article  CAS  PubMed  Google Scholar 

  81. Phipps RJ, Hamilton GL, Toste FD. Nat Chem, 2012, 4: 603–614

    Article  CAS  PubMed  Google Scholar 

  82. Chen DF, Han ZY, Zhou XL, Gong LZ. Acc Chem Res, 2014, 47: 2365–2377

    Article  CAS  PubMed  Google Scholar 

  83. Parmar D, Sugiono E, Raja S, Rueping M. Chem Rev, 2014, 114: 9047–9153

    Article  CAS  PubMed  Google Scholar 

  84. Wang Z, Chen Z, Sun J. Org Biomol Chem, 2014, 12: 6028–6032

    Article  CAS  PubMed  Google Scholar 

  85. Yang ZP, Zhang W, You SL. J Org Chem, 2014, 79: 7785–7798

    Article  CAS  PubMed  Google Scholar 

  86. Akiyama T, Mori K. Chem Rev, 2015, 115: 9277–9306

    Article  CAS  PubMed  Google Scholar 

  87. Wang YB, Tan B. Acc Chem Res, 2018, 51: 534–547

    Article  CAS  PubMed  Google Scholar 

  88. Ren YY, Zhu SF, Zhou QL. Org Biomol Chem, 2018, 16: 3087–3094

    Article  CAS  PubMed  Google Scholar 

  89. Damour D, Barreau M, Dutruc-Rosset G, Doble A, Piot O, Mignani S. Bioorg Med Chem Lett, 1994, 4: 415–420

    Article  CAS  Google Scholar 

  90. Heinonen P, Sipilä H, Neuvonen K, Lönnberg H, Cockcroft V, Wurster S, Virtanen R, Savola M, Salonen J, Savola J. Eur J Med Chem, 1996, 31: 725–729

    Article  CAS  Google Scholar 

  91. Showell GA, Mills JS. Drug Discovery Today, 2003, 8: 551–556

    Article  CAS  PubMed  Google Scholar 

  92. Showell GA, Barnes MJ, Daiss JO, Mills JS, Montana JG, Tacke R, Warneck JBH. Bioorg Med Chem Lett, 2006, 16: 2555–2558

    Article  CAS  PubMed  Google Scholar 

  93. Tacke R, Popp F, Müller B, Theis B, Burschka C, Hamacher A, Kassack MU, Schepmann D, Wünsch B, Jurva U, Wellner E. ChemMedChem, 2008, 3: 152–164

    Article  CAS  PubMed  Google Scholar 

  94. For a selected recent review, see: (a) Hong L, Sun W, Yang D, Li G, Wang R. Chem Rev, 2016, 116: 4006–4123

    Article  CAS  PubMed  Google Scholar 

  95. Itoh J, Fuchibe K, Akiyama T. Angew Chem Int Ed, 2006, 45: 4796–4798

    Article  CAS  Google Scholar 

  96. Rueping M, Azap C. Angew Chem Int Ed, 2006, 45: 7832–7835

    Article  CAS  Google Scholar 

  97. Li G, Antilla JC. Org Lett, 2009, 11: 1075–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lackner AD, Samant AV, Toste FD. J Am Chem Soc, 2013, 135: 14090–14093

    Article  CAS  PubMed  Google Scholar 

  99. Guin J, Varseev G, List B. J Am Chem Soc, 2013, 135: 2100–2103

    Article  CAS  PubMed  Google Scholar 

  100. Chen M, Sun J. Angew Chem Int Ed, 2017, 56: 11966–11970

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21722203, 21831002, 21801116, 21572096), Shenzhen Special Funds for the Development of Biomedicine, Internet, New Energy, and New Material Industries (JCYJ20170412152435366, JCYJ20170307105638498, JCYJ20180302180235837), Guangdong Natural Science Foundation (2018A030310083), and Shenzhen Nobel Prize Scientists Laboratory Project (C17783101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang-Shuai Gu, Zhong-Liang Li or Xin-Yuan Liu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Liu, XD., Guo, XQ. et al. Cu/chiral phosphoric acid-catalyzed radical-initiated asymmetric aminosilylation of alkene with hydrosilane. Sci. China Chem. 62, 1529–1536 (2019). https://doi.org/10.1007/s11426-019-9528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9528-2

Keywords

Navigation