Science China Chemistry

, Volume 62, Issue 4, pp 417–429 | Cite as

Metal-organic framework based nanomaterials for electrocatalytic oxygen redox reaction

  • Kexin Zhang
  • Wenhan Guo
  • Zibin Liang
  • Ruqiang ZouEmail author


Due to the severe environmental issues, many advanced technologies, typically fuel cells and metal-air batteries have aroused widespread concerns and been intensively studied in recent years. However, oxygen redox reactions including oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) as the core reactions suffer from sluggish kinetics of the multiple electron transfer process. Currently, Pt, RuO2, and IrO2 are considered to be the benchmark catalysts for ORR and OER, but their high price, scarcity and instability hinder them from large-scale application. To overcome these limits, exploring alternative electrocatalysts with low cost, high activity, long-term stability, and earth-abundance is of extreme urgency. Metal-organic frameworks (MOFs) are a family of inorganic-organic hybrid materials with high surface areas and tunable structures, making them proper as catalyst candidates. Herein, the recent progress of MOFs and MOF-derived materials for ORR and OER is systematically reviewed, and the relationship between compositions and electrochemical performance is discussed. It is expected that this review can be helpful for the future development of related MOF-based materials with excellent electrochemical performance.


metal-organic frameworks oxygen evolution reaction oxygen reduction reaction earth-abundant materials electrocatalysis nanomaterials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51825201), the National Key Research and Development Program of China (2017YFA0206701), the National Program for Support of Top-notch Young Professionals, and Changjiang Scholar Program.


  1. 1.
    Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Chem Soc Rev, 2015, 44: 2060–2086CrossRefGoogle Scholar
  2. 2.
    Guan BY, Yu XY, Wu HB, Lou XWD. Adv Mater, 2017, 29: 1703614CrossRefGoogle Scholar
  3. 3.
    Gupta S, Zhao S, Wang XX, Hwang S, Karakalos S, Devaguptapu SV, Mukherjee S, Su D, Xu H, Wu G. ACS Catal, 2017, 7: 8386–8393CrossRefGoogle Scholar
  4. 4.
    Cheng Q, Han S, Mao K, Chen C, Yang L, Zou Z, Gu M, Hu Z, Yang H. Nano Energy, 2018, 52: 485–493CrossRefGoogle Scholar
  5. 5.
    Stevens MB, Enman LJ, Batchellor AS, Cosby MR, Vise AE, Trang CDM, Boettcher SW. Chem Mater, 2016, 29: 120–140CrossRefGoogle Scholar
  6. 6.
    Zhang L, Doyle-Davis K, Sun XL. Energy Environ Sci, 2019, Scholar
  7. 7.
    Qian Y, Khan IA, Zhao D. Small, 2017, 13: 1701143CrossRefGoogle Scholar
  8. 8.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science, 2013, 341: 1230444CrossRefGoogle Scholar
  9. 9.
    Zhang X, Chen A, Zhong M, Zhang ZH, Zhang X, Zhou Z, Bu XH. Electrochem Energy Rev, 2018, Scholar
  10. 10.
    Zhao Y, Song Z, Li X, Sun Q, Cheng N, Lawes S, Sun X. Energy Storage Mater, 2016, 2: 35–62CrossRefGoogle Scholar
  11. 11.
    Gao M, Liu X, Yang H, Yu Y. Sci China Chem, 2018, 61: 1151–1158CrossRefGoogle Scholar
  12. 12.
    Song Z, Cheng N, Lushington A, Sun X. Catalysts, 2016, 6: 116CrossRefGoogle Scholar
  13. 13.
    Xia W, Mahmood A, Zou R, Xu Q. Energy Environ Sci, 2015, 8: 1837–1866CrossRefGoogle Scholar
  14. 14.
    Zhang K, Qu C, Liang Z, Gao S, Zhang H, Zhu B, Meng W, Fu E, Zou R. ACS Appl Mater Interfaces, 2018, 10: 30460–30469CrossRefGoogle Scholar
  15. 15.
    Yi FY, Zhang R, Wang H, Chen LF, Han L, Jiang HL, Xu Q. Small Methods, 2017, 1: 1700187CrossRefGoogle Scholar
  16. 16.
    Huang ZF, Wang J, Peng Y, Jung CY, Fisher A, Wang X. Adv Energy Mater, 2017, 7: 1700544CrossRefGoogle Scholar
  17. 17.
    Yeager E. J Mol Catal, 1986, 38: 5–25CrossRefGoogle Scholar
  18. 18.
    Sanchez-Sanchez CM, Bard AJ. Anal Chem, 2009, 81: 8094–8100CrossRefGoogle Scholar
  19. 19.
    Song CJ, Zhang JJ. PEM Fuel Cell Electrocatalysts and Catalyst Layers. Heidelberg: Springer, 2008. 89–134CrossRefGoogle Scholar
  20. 20.
    Yu L, Pan X, Cao X, Hu P, Bao X. J Catal, 2011, 282: 183–190CrossRefGoogle Scholar
  21. 21.
    Morozan A, Jousselme B, Palacin S. Energy Environ Sci, 2011, 4: 1238–1254CrossRefGoogle Scholar
  22. 22.
    Shao M, Chang Q, Dodelet JP, Chenitz R. Chem Rev, 2016, 116: 3594–3657CrossRefGoogle Scholar
  23. 23.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H. J Phys Chem B, 2004, 108: 17886–17892CrossRefGoogle Scholar
  24. 24.
    Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J. Chem-CatChem, 2011, 3: 1159–1165Google Scholar
  25. 25.
    Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. ChemCatChem, 2010, 2: 724–761CrossRefGoogle Scholar
  26. 26.
    Trasatti S. Electrochim Acta, 1984, 29: 1503–1512CrossRefGoogle Scholar
  27. 27.
    Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y. Science, 2011, 334: 1383–1385CrossRefGoogle Scholar
  28. 28.
    Cho K, Han SH, Suh MP. Angew Chem Int Ed, 2016, 55: 15301–15305CrossRefGoogle Scholar
  29. 29.
    Decoste JB, Peterson GW, Smith MW, Stone CA, Willis CR. J Am Chem Soc, 2012, 134: 1486–1489CrossRefGoogle Scholar
  30. 30.
    Usov PM, Huffman B, Epley CC, Kessinger MC, Zhu J, Maza WA, Morris AJ. ACS Appl Mater Interfaces, 2017, 9: 33539–33543CrossRefGoogle Scholar
  31. 31.
    Mao J, Yang L, Yu P, Wei X, Mao L. Electrochem Commun, 2012, 19: 29–31CrossRefGoogle Scholar
  32. 32.
    Jiang M, Li L, Zhu D, Zhang H, Zhao X. J Mater Chem A, 2014, 2: 5323–5329CrossRefGoogle Scholar
  33. 33.
    Sohrabi S, Dehghanpour S, Ghalkhani M. ChemCatChem, 2016, 8: 2356–2366CrossRefGoogle Scholar
  34. 34.
    Jahan M, Bao Q, Loh KP. J Am Chem Soc, 2012, 134: 6707–6713CrossRefGoogle Scholar
  35. 35.
    Wang H, Yin F, Chen B, Li G. J Mater Chem A, 2015, 3: 16168–16176CrossRefGoogle Scholar
  36. 36.
    Banham D, Feng F, Pei K, Ye S, Birss V. J Mater Chem A, 2013, 1: 2812–2820CrossRefGoogle Scholar
  37. 37.
    Zhang L, Su Z, Jiang F, Yang L, Qian J, Zhou Y, Li W, Hong M. Nanoscale, 2014, 6: 6590–6602CrossRefGoogle Scholar
  38. 38.
    Zhong H, Wang J, Zhang Y, Xu W, Xing W, Xu D, Zhang Y, Zhang X. Angew Chem Int Ed, 2014, 53: 14235–14239CrossRefGoogle Scholar
  39. 39.
    Song Z, Liu W, Cheng N, Norouzi Banis M, Li X, Sun Q, Xiao B, Liu Y, Lushington A, Li R, Liu L, Sun X. Mater Horiz, 2017, 4: 900–907CrossRefGoogle Scholar
  40. 40.
    Wu M, Li C, Zhao J, Ling Y, Liu R. Dalton Trans, 2018, 47: 7812–7818CrossRefGoogle Scholar
  41. 41.
    Wang Y, Tao L, Xiao Z, Chen R, Jiang Z, Wang S. Adv Funct Mater, 2018, 28: 1705356CrossRefGoogle Scholar
  42. 42.
    Qian Y, An T, Birgersson KE, Liu Z, Zhao D. Small, 2018, 14: 1704169CrossRefGoogle Scholar
  43. 43.
    Xuan C, Hou B, Xia W, Peng Z, Shen T, Xin HL, Zhang G, Wang D. J Mater Chem A, 2018, 6: 10731–10739CrossRefGoogle Scholar
  44. 44.
    Wu M, Wang K, Yi M, Tong Y, Wang Y, Song S. ACS Catal, 2017, 7: 6082–6088CrossRefGoogle Scholar
  45. 45.
    Shi PC, Yi JD, Liu TT, Li L, Zhang LJ, Sun CF, Wang YB, Huang YB, Cao R. J Mater Chem A, 2017, 5: 12322–12329CrossRefGoogle Scholar
  46. 46.
    Chung DY, Lee KJ, Yu SH, Kim M, Lee SY, Kim OH, Park HJ, Sung YE. Adv Energy Mater, 2015, 5: 1401309CrossRefGoogle Scholar
  47. 47.
    Ye L, Chai G, Wen Z. Adv Funct Mater, 2017, 27: 1606190CrossRefGoogle Scholar
  48. 48.
    Kim IT, Shin S, Shin MW. Carbon, 2018, 135: 35–43CrossRefGoogle Scholar
  49. 49.
    Zhang P, Sun F, Xiang Z, Shen Z, Yun J, Cao D. Energy Environ Sci, 2014, 7: 442–450CrossRefGoogle Scholar
  50. 50.
    Pandiaraj S, Aiyappa HB, Banerjee R, Kurungot S. Chem Commun, 2014, 50: 3363–3366CrossRefGoogle Scholar
  51. 51.
    Xia W, Zhu J, Guo W, An L, Xia D, Zou R. J Mater Chem A, 2014, 2: 11606–11613CrossRefGoogle Scholar
  52. 52.
    You B, Jiang N, Sheng M, Drisdell WS, Yano J, Sun Y. ACS Catal, 2015, 5: 7068–7076CrossRefGoogle Scholar
  53. 53.
    Song X, Guo L, Liao X, Liu J, Sun J, Li X. Small, 2017, 13: 1700238CrossRefGoogle Scholar
  54. 54.
    Ahn SH, Klein MJ, Manthiram A. Adv Energy Mater, 2017, 7: 1601979CrossRefGoogle Scholar
  55. 55.
    Wan X, Wu R, Deng J, Nie Y, Chen S, Ding W, Huang X, Wei Z. J Mater Chem A, 2018, 6: 3386–3390CrossRefGoogle Scholar
  56. 56.
    Li Z, Shao M, Zhou L, Yang Q, Zhang C, Wei M, Evans DG, Duan X. Nano Energy, 2016, 25: 100–109CrossRefGoogle Scholar
  57. 57.
    Wang R, Yan T, Han L, Chen G, Li H, Zhang J, Shi L, Zhang D. J Mater Chem A, 2018, 6: 5752–5761CrossRefGoogle Scholar
  58. 58.
    Niu Q, Guo J, Chen B, Nie J, Guo X, Ma G. Carbon, 2017, 114: 250–260CrossRefGoogle Scholar
  59. 59.
    Zhang J, Wu C, Huang M, Zhao Y, Li J, Guan L. ChemCatChem, 2018, 10: 1336–1343CrossRefGoogle Scholar
  60. 60.
    Jasinski R. Nature, 1964, 201: 1212–1213CrossRefGoogle Scholar
  61. 61.
    You S, Gong X, Wang W, Qi D, Wang X, Chen X, Ren N. Adv Energy Mater, 2016, 6: 1501497CrossRefGoogle Scholar
  62. 62.
    Peera SG, Balamurugan J, Kim NH, Lee JH. Small, 2018, 14: 1800441CrossRefGoogle Scholar
  63. 63.
    Collman JP, Devaraj NK, Decréau RA, Yang Y, Yan YL, Ebina W, Eberspacher TA, Chidsey CED. Science, 2007, 315: 1565–1568CrossRefGoogle Scholar
  64. 64.
    Xiao M, Zhang H, Chen Y, Zhu J, Gao L, Jin Z, Ge J, Jiang Z, Chen S, Liu C, Xing W. Nano Energy, 2018, 46: 396–403CrossRefGoogle Scholar
  65. 65.
    Wang X, Zhang H, Lin H, Gupta S, Wang C, Tao Z, Fu H, Wang T, Zheng J, Wu G, Li X. Nano Energy, 2016, 25: 110–119CrossRefGoogle Scholar
  66. 66.
    Lai Q, Zheng L, Liang Y, He J, Zhao J, Chen J. ACS Catal, 2017, 7: 1655–1663CrossRefGoogle Scholar
  67. 67.
    Li G, Zhang J, Li W, Fan K, Xu C. Nanoscale, 2018, 10: 9252–9260CrossRefGoogle Scholar
  68. 68.
    Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G. J Am Chem Soc, 2017, 139: 14143–14149CrossRefGoogle Scholar
  69. 69.
    Wang XX, Cullen DA, Pan YT, Hwang S, Wang M, Feng Z, Wang J, Engelhard MH, Zhang H, He Y, Shao Y, Su D, More KL, Spendelow JS, Wu G. Adv Mater, 2018, 30: 1706758CrossRefGoogle Scholar
  70. 70.
    Li JZ, Chen MJ, Cullen DA, Hwang S, Wang MY, Li BY, Liu KX, Karakalos S, Lucero M, Zhang HG, Lei C, Xu H, Sterbinsky GE, Feng ZX, Su D, More KL, Wang GF, Wang ZB, Wu G. Nat Catal, 2018, Scholar
  71. 71.
    Duan J, Chen S, Zhao C. Nat Commun, 2017, 8: 15341CrossRefGoogle Scholar
  72. 72.
    Hai G, Jia X, Zhang K, Liu X, Wu Z, Wang G. Nano Energy, 2018, 44: 345–352CrossRefGoogle Scholar
  73. 73.
    Zhao SL, Wang Y, Dong JC, He CT, Yin HJ, An PF, Zhao K, Zhang XF, Gao C, Zhang LJ, Lv JW, Wang JX, Zhang JQ, Khattak AM, Khan NA, Wei ZX, Zhang J, Liu SQ, Zhao HJ, Tang ZY. Nat Energy, 2016, 1: 16184CrossRefGoogle Scholar
  74. 74.
    Li FL, Shao Q, Huang X, Lang JP. Angew Chem Int Ed, 2018, 57: 1888–1892CrossRefGoogle Scholar
  75. 75.
    Xu Y, Tu W, Zhang B, Yin S, Huang Y, Kraft M, Xu R. Adv Mater, 2017, 29: 1605957CrossRefGoogle Scholar
  76. 76.
    Sun H, Lian Y, Yang C, Xiong L, Qi P, Mu Q, Zhao X, Guo J, Deng Z, Peng Y. Energy Environ Sci, 2018, 11: 2363–2371CrossRefGoogle Scholar
  77. 77.
    Tao Z, Wang T, Wang X, Zheng J, Li X. ACS Appl Mater Interfaces, 2016, 8: 35390–35397CrossRefGoogle Scholar
  78. 78.
    Li X, Niu Z, Jiang J, Ai L. J Mater Chem A, 2016, 4: 3204–3209CrossRefGoogle Scholar
  79. 79.
    Zhao J, Quan X, Chen S, Liu Y, Yu H. ACS Appl Mater Interfaces, 2017, 9: 28685–28694CrossRefGoogle Scholar
  80. 80.
    Yang F, Zhao P, Hua X, Luo W, Cheng G, Xing W, Chen S. J Mater Chem A, 2016, 4: 16057–16063CrossRefGoogle Scholar
  81. 81.
    Zhou J, Dou Y, Zhou A, Shu L, Chen Y, Li JR. ACS Energy Lett, 2018, 3: 1655–1661CrossRefGoogle Scholar
  82. 82.
    Lu XF, Gu LF, Wang JW, Wu JX, Liao PQ, Li GR. Adv Mater, 2017, 29: 1604437CrossRefGoogle Scholar
  83. 83.
    Xu H, Shi ZX, Tong YX, Li GR. Adv Mater, 2018, 30: 1705442CrossRefGoogle Scholar
  84. 84.
    Huang T, Chen Y, Lee JM. Small, 2017, 13: 1702753CrossRefGoogle Scholar
  85. 85.
    Lyu F, Bai Y, Li Z, Xu W, Wang Q, Mao J, Wang L, Zhang X, Yin Y. Adv Funct Mater, 2017, 27: 1702324CrossRefGoogle Scholar
  86. 86.
    Wu LL, Wang QS, Li J, Long Y, Liu Y, Song SY, Zhang HJ. Small, 2018, 14: 1704035CrossRefGoogle Scholar
  87. 87.
    Zhang X, Liu S, Zang Y, Liu R, Liu G, Wang G, Zhang Y, Zhang H, Zhao H. Nano Energy, 2016, 30: 93–102CrossRefGoogle Scholar
  88. 88.
    Liu X, Liu Y, Fan LZ. J Mater Chem A, 2017, 5: 15310–15314CrossRefGoogle Scholar
  89. 89.
    Li S, Peng S, Huang L, Cui X, Al-Enizi AM, Zheng G. ACS Appl Mater Interfaces, 2016, 8: 20534–20539CrossRefGoogle Scholar
  90. 90.
    Xu B, Yang H, Yuan L, Sun Y, Chen Z, Li C. J Power Sources, 2017, 366: 193–199CrossRefGoogle Scholar
  91. 91.
    Wang X, Huang X, Gao W, Tang Y, Jiang P, Lan K, Yang R, Wang B, Li R. J Mater Chem A, 2018, 6: 3684–3691CrossRefGoogle Scholar
  92. 92.
    Liu M, Lu X, Guo C, Wang Z, Li Y, Lin Y, Zhou Y, Wang S, Zhang J. ACS Appl Mater Interfaces, 2017, 9: 36146–36153CrossRefGoogle Scholar
  93. 93.
    Yan L, Cao L, Dai P, Gu X, Liu D, Li L, Wang Y, Zhao X. Adv Funct Mater, 2017, 27: 1703455CrossRefGoogle Scholar
  94. 94.
    He P, Yu XY, Lou XWD. Angew Chem Int Ed, 2017, 56: 3897–3900CrossRefGoogle Scholar
  95. 95.
    Wang M, Dong CL, Huang YC, Li Y, Shen S. Small, 2018, 14: 1801756CrossRefGoogle Scholar
  96. 96.
    Zhou T, Du Y, Wang D, Yin S, Tu W, Chen Z, Borgna A, Xu R. ACS Catal, 2017, 7: 6000–6007CrossRefGoogle Scholar
  97. 97.
    Zhao S, Yin H, Du L, He L, Zhao K, Chang L, Yin G, Zhao H, Liu S, Tang Z. ACS Nano, 2014, 8: 12660–12668CrossRefGoogle Scholar
  98. 98.
    Xia W, Zou R, An L, Xia D, Guo S. Energy Environ Sci, 2015, 8: 568–576CrossRefGoogle Scholar
  99. 99.
    Li Z, Shao M, Zhou L, Zhang R, Zhang C, Wei M, Evans DG, Duan X. Adv Mater, 2016, 28: 2337–2344CrossRefGoogle Scholar
  100. 100.
    Jiao L, Zhou YX, Jiang HL. Chem Sci, 2016, 7: 1690–1695CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kexin Zhang
    • 1
  • Wenhan Guo
    • 1
  • Zibin Liang
    • 1
  • Ruqiang Zou
    • 1
    Email author
  1. 1.Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations