Skip to main content
Log in

Flexible ITO-free organic solar cells over 10% by employing drop-coated conductive PEDOT:PSS transparent anodes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonic acid) (PEDOT:PSS) has been explored to fabricate flexible and stretchable conductors. Generally, PEDOT:PSS transparent anodes are prepared by spin-coating method. In this article, we adopt a method by dropping PEDOT:PSS aqueous solution on the PET plastic substrate to fabricate flexible electrodes. Compared with spin coating, drop-coating is simple and cost-effective with large-area fabrications. Through this method, we fabricated highly transparent conductive electrodes and systematically studied their electrical, optical, morphological and mechanical properties. With dimethyl sulfoxide/methanesulfonic acid (DMSO/MSA) treated PEDOT:PSS electrode, bendable devices based on non-fullerene system displayed an open-circuit voltage of 0.925 V, a fill factor of 70.74%, and a high power conversion efficiency (PCE) of 10.23% under 100 mW cm−2 illumination, which retained over 80% of the initial PCE value after 1000 bending cycles. Based on the findings, drop-coated PEDOT:PSS electrodes exhibited high suitability for the development of large-area and high-efficiency printed solar cell modules in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun H, Liu S, Lin W, Zhang KY, Lv W, Huang X, Huo F, Yang H, Jenkins G, Zhao Q, Huang W. Nat Commun, 2014, 5: 3601–3609

    Article  CAS  PubMed  Google Scholar 

  2. An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W. Nat Mater, 2015, 14: 685–690

    Article  CAS  PubMed  Google Scholar 

  3. Li D, Lai WY, Zhang YZ, Huang W. Adv Mater, 2018, 30: 1704738

    Article  CAS  Google Scholar 

  4. Chun KY, Oh Y, Rho J, Ahn JH, Kim YJ, Choi HR, Baik S. Nat Nanotech, 2010, 5: 853–857

    Article  CAS  Google Scholar 

  5. Rowell MW, Topinka MA, McGehee MD, Prall HJ, Dennler G, Sariciftci NS, Hu L, Gruner G. Appl Phys Lett, 2006, 88: 233506

    Article  CAS  Google Scholar 

  6. Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q. ACS Appl Mater Interfaces, 2010, 2: 3572–3577

    Article  CAS  PubMed  Google Scholar 

  7. Seo JH, Hwang I, Um HD, Lee S, Lee K, Park J, Shin H, Kwon TH, Kang SJ, Seo K. Adv Mater, 2017, 29: 1701479

    Article  CAS  Google Scholar 

  8. Wang BY, Yoo TH, Lim JW, Sang BI, Lim DS, Choi WK, Hwang DK, Oh YJ. Small, 2015, 11: 1905–1911

    Article  CAS  PubMed  Google Scholar 

  9. Leem DS, Edwards A, Faist M, Nelson J, Bradley DDC, de Mello JC. Adv Mater, 2011, 23: 4371–4375

    Article  CAS  PubMed  Google Scholar 

  10. Liu Z, Li J, Yan F. Adv Mater, 2013, 25: 4296–4301

    Article  CAS  PubMed  Google Scholar 

  11. An T, Cheng W. J Mater Chem A, 2018, 6: 15478–15494

    Article  CAS  Google Scholar 

  12. Park H, Chang S, Zhou X, Kong J, Palacios T, Gradecak S. Nano Lett, 2014, 14: 5148–5154

    Article  CAS  PubMed  Google Scholar 

  13. Song W, Fan X, Xu B, Yan F, Cui H, Wei Q, Peng R, Hong L, Huang J, Ge Z. Adv Mater, 2018, 30: 1800075

    Article  CAS  Google Scholar 

  14. Fan X, Wang J, Wang H, Liu X, Wang H. ACS Appl Mater Interfaces, 2015, 7: 16287–16295

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Wu J, Wang J, Zhang J, Yang Q, Fu Y, Xie Z. Sol Energy Mater Sol Cells, 2016, 144: 143–149

    Article  CAS  Google Scholar 

  16. Fan X, Xu B, Liu S, Cui C, Wang J, Yan F. ACS Appl Mater Interfaces, 2016, 8: 14029–14036

    Article  CAS  PubMed  Google Scholar 

  17. Ouyang J. ACS Appl Mater Interfaces, 2013, 5: 13082–13088

    Article  CAS  PubMed  Google Scholar 

  18. Andrei V, Bethke K, Madzharova F, Beeg S, Knop-Gericke A, Kneipp J, Rademann K. Adv Electron Mater, 2017, 3: 1600473

    Article  CAS  Google Scholar 

  19. Cho C, Wallace KL, Tzeng P, Hsu JH, Yu C, Grunlan JC. Adv Energy Mater, 2016, 6: 1502168

    Article  CAS  Google Scholar 

  20. Palumbiny CM, Liu F, Russell TP, Hexemer A, Wang C, Müller-Buschbaum P. Adv Mater, 2015, 27: 3391–3397

    Article  CAS  PubMed  Google Scholar 

  21. Fan Z, Li P, Du D, Ouyang J. Adv Energy Mater, 2017, 7: 1602116

    Article  CAS  Google Scholar 

  22. Kim S, Sanyoto B, Park WT, Kim S, Mandal S, Lim JC, Noh YY, Kim JH. Adv Mater, 2016, 28: 10149–10154

    Article  CAS  PubMed  Google Scholar 

  23. Hsiao YS, Whang WT, Chen CP, Chen YC. J Mater Chem, 2008, 18: 5948–5955

    Article  CAS  Google Scholar 

  24. Kim WH, Mäkinen AJ, Nikolov N, Shashidhar R, Kim H, Kafafi ZH. Appl Phys Lett, 2002, 80: 3844–3846

    Article  CAS  Google Scholar 

  25. Alemu D, Wei HY, Ho KC, Chu CW. Energy Environ Sci, 2012, 5: 9662–9671

    Article  CAS  Google Scholar 

  26. Kim YH, Sachse C, Machala ML, May C, Müller-Meskamp L, Leo K. Adv Funct Mater, 2011, 21: 1076–1081

    Article  CAS  Google Scholar 

  27. Jäckle S, Liebhaber M, Niederhausen J, Büchele M, Félix R, Wilks RG, Bär M, Lips K, Christiansen S. ACS Appl Mater Interfaces, 2016, 8: 8841–8848

    Article  CAS  PubMed  Google Scholar 

  28. Min X, Jiang F, Qin F, Li Z, Tong J, Xiong S, Meng W, Zhou Y. ACS Appl Mater Interfaces, 2014, 6: 22628–22633

    Article  CAS  PubMed  Google Scholar 

  29. van de Wiel HJ, Galagan Y, van Lammeren TJ, de Riet JFJ, Gilot J, Nagelkerke MGM, Lelieveld RHCAT, Shanmugam S, Pagudala A, Hui D, Groen WA. Nanotechnology, 2013, 24: 484014

    Article  CAS  PubMed  Google Scholar 

  30. Krebs FC. Sol Energy Mater Sol Cells, 2009, 93: 394–412

    Article  CAS  Google Scholar 

  31. Tang A, Zhan C, Yao J, Zhou E. Adv Mater, 2017, 29: 1600013

    Article  CAS  Google Scholar 

  32. Tang A, Xiao B, Wang Y, Gao F, Tajima K, Bin H, Zhang ZG, Li Y, Wei Z, Zhou E. Adv Funct Mater, 2018, 28: 1704507

    Article  CAS  Google Scholar 

  33. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  PubMed  Google Scholar 

  34. Geng Y, Tang A, Tajima K, Zeng Q, Zhou E. J Mater Chem A, 2019, 7: 64–96

    Article  CAS  Google Scholar 

  35. Worfolk BJ, Andrews SC, Park S, Reinspach J, Liu N, Toney MF, Mannsfeld SCB, Bao Z. Proc Natl Acad Sci USA, 2015, 112: 14138–14143

    Article  CAS  PubMed  Google Scholar 

  36. Kim N, Kang H, Lee JH, Kee S, Lee SH, Lee K. Adv Mater, 2015, 27: 2317–2323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFE0106000), the National Natural Science Foundation of China (51773212, 21574144, 21674123, 61705240), Zhejiang Provincial Natural Science Foundation of China (LR16B040002), Ningbo Municipal Science and Technology Innovative Research Team (2015B11002, 2016B10005), CAS Interdisciplinary Innovation Team, CAS Key Project of Frontier Science Research (QYZDBSSW-SYS030), and CAS Key Project of International Cooperation (174433KYSB20160065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruixiang Peng, Jianfeng Zhang or Ziyi Ge.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Song, W., Fanady, B. et al. Flexible ITO-free organic solar cells over 10% by employing drop-coated conductive PEDOT:PSS transparent anodes. Sci. China Chem. 62, 500–505 (2019). https://doi.org/10.1007/s11426-018-9426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9426-2

Keywords

Navigation