Science China Chemistry

, Volume 62, Issue 4, pp 500–505 | Cite as

Flexible ITO-free organic solar cells over 10% by employing drop-coated conductive PEDOT:PSS transparent anodes

  • Huiqin Cui
  • Wei Song
  • Billy Fanady
  • Ruixiang PengEmail author
  • Jianfeng ZhangEmail author
  • Jiaming Huang
  • Ziyi GeEmail author


Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonic acid) (PEDOT:PSS) has been explored to fabricate flexible and stretchable conductors. Generally, PEDOT:PSS transparent anodes are prepared by spin-coating method. In this article, we adopt a method by dropping PEDOT:PSS aqueous solution on the PET plastic substrate to fabricate flexible electrodes. Compared with spin coating, drop-coating is simple and cost-effective with large-area fabrications. Through this method, we fabricated highly transparent conductive electrodes and systematically studied their electrical, optical, morphological and mechanical properties. With dimethyl sulfoxide/methanesulfonic acid (DMSO/MSA) treated PEDOT:PSS electrode, bendable devices based on non-fullerene system displayed an open-circuit voltage of 0.925 V, a fill factor of 70.74%, and a high power conversion efficiency (PCE) of 10.23% under 100 mW cm−2 illumination, which retained over 80% of the initial PCE value after 1000 bending cycles. Based on the findings, drop-coated PEDOT:PSS electrodes exhibited high suitability for the development of large-area and high-efficiency printed solar cell modules in the future.


drop-coating PEDOT:PSS flexible electrodes figure of merit organic solar cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key R&D Program of China (2017YFE0106000), the National Natural Science Foundation of China (51773212, 21574144, 21674123, 61705240), Zhejiang Provincial Natural Science Foundation of China (LR16B040002), Ningbo Municipal Science and Technology Innovative Research Team (2015B11002, 2016B10005), CAS Interdisciplinary Innovation Team, CAS Key Project of Frontier Science Research (QYZDBSSW-SYS030), and CAS Key Project of International Cooperation (174433KYSB20160065).

Supplementary material

11426_2018_9426_MOESM1_ESM.docx (1.2 mb)
Flexible ITO-free organic solar cells over 10% by employing drop-coated conductive PEDOT:PSS transparent anodes


  1. 1.
    Sun H, Liu S, Lin W, Zhang KY, Lv W, Huang X, Huo F, Yang H, Jenkins G, Zhao Q, Huang W. Nat Commun, 2014, 5: 3601–3609CrossRefGoogle Scholar
  2. 2.
    An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W. Nat Mater, 2015, 14: 685–690CrossRefGoogle Scholar
  3. 3.
    Li D, Lai WY, Zhang YZ, Huang W. Adv Mater, 2018, 30: 1704738CrossRefGoogle Scholar
  4. 4.
    Chun KY, Oh Y, Rho J, Ahn JH, Kim YJ, Choi HR, Baik S. Nat Nanotech, 2010, 5: 853–857CrossRefGoogle Scholar
  5. 5.
    Rowell MW, Topinka MA, McGehee MD, Prall HJ, Dennler G, Sariciftci NS, Hu L, Gruner G. Appl Phys Lett, 2006, 88: 233506CrossRefGoogle Scholar
  6. 6.
    Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q. ACS Appl Mater Interfaces, 2010, 2: 3572–3577CrossRefGoogle Scholar
  7. 7.
    Seo JH, Hwang I, Um HD, Lee S, Lee K, Park J, Shin H, Kwon TH, Kang SJ, Seo K. Adv Mater, 2017, 29: 1701479CrossRefGoogle Scholar
  8. 8.
    Wang BY, Yoo TH, Lim JW, Sang BI, Lim DS, Choi WK, Hwang DK, Oh YJ. Small, 2015, 11: 1905–1911CrossRefGoogle Scholar
  9. 9.
    Leem DS, Edwards A, Faist M, Nelson J, Bradley DDC, de Mello JC. Adv Mater, 2011, 23: 4371–4375CrossRefGoogle Scholar
  10. 10.
    Liu Z, Li J, Yan F. Adv Mater, 2013, 25: 4296–4301CrossRefGoogle Scholar
  11. 11.
    An T, Cheng W. J Mater Chem A, 2018, 6: 15478–15494CrossRefGoogle Scholar
  12. 12.
    Park H, Chang S, Zhou X, Kong J, Palacios T, Gradecak S. Nano Lett, 2014, 14: 5148–5154CrossRefGoogle Scholar
  13. 13.
    Song W, Fan X, Xu B, Yan F, Cui H, Wei Q, Peng R, Hong L, Huang J, Ge Z. Adv Mater, 2018, 30: 1800075CrossRefGoogle Scholar
  14. 14.
    Fan X, Wang J, Wang H, Liu X, Wang H. ACS Appl Mater Interfaces, 2015, 7: 16287–16295CrossRefGoogle Scholar
  15. 15.
    Zhang X, Wu J, Wang J, Zhang J, Yang Q, Fu Y, Xie Z. Sol Energy Mater Sol Cells, 2016, 144: 143–149CrossRefGoogle Scholar
  16. 16.
    Fan X, Xu B, Liu S, Cui C, Wang J, Yan F. ACS Appl Mater Interfaces, 2016, 8: 14029–14036CrossRefGoogle Scholar
  17. 17.
    Ouyang J. ACS Appl Mater Interfaces, 2013, 5: 13082–13088CrossRefGoogle Scholar
  18. 18.
    Andrei V, Bethke K, Madzharova F, Beeg S, Knop-Gericke A, Kneipp J, Rademann K. Adv Electron Mater, 2017, 3: 1600473CrossRefGoogle Scholar
  19. 19.
    Cho C, Wallace KL, Tzeng P, Hsu JH, Yu C, Grunlan JC. Adv Energy Mater, 2016, 6: 1502168CrossRefGoogle Scholar
  20. 20.
    Palumbiny CM, Liu F, Russell TP, Hexemer A, Wang C, Müller-Buschbaum P. Adv Mater, 2015, 27: 3391–3397CrossRefGoogle Scholar
  21. 21.
    Fan Z, Li P, Du D, Ouyang J. Adv Energy Mater, 2017, 7: 1602116CrossRefGoogle Scholar
  22. 22.
    Kim S, Sanyoto B, Park WT, Kim S, Mandal S, Lim JC, Noh YY, Kim JH. Adv Mater, 2016, 28: 10149–10154CrossRefGoogle Scholar
  23. 23.
    Hsiao YS, Whang WT, Chen CP, Chen YC. J Mater Chem, 2008, 18: 5948–5955CrossRefGoogle Scholar
  24. 24.
    Kim WH, Mäkinen AJ, Nikolov N, Shashidhar R, Kim H, Kafafi ZH. Appl Phys Lett, 2002, 80: 3844–3846CrossRefGoogle Scholar
  25. 25.
    Alemu D, Wei HY, Ho KC, Chu CW. Energy Environ Sci, 2012, 5: 9662–9671CrossRefGoogle Scholar
  26. 26.
    Kim YH, Sachse C, Machala ML, May C, Müller-Meskamp L, Leo K. Adv Funct Mater, 2011, 21: 1076–1081CrossRefGoogle Scholar
  27. 27.
    Jäckle S, Liebhaber M, Niederhausen J, Büchele M, Félix R, Wilks RG, Bär M, Lips K, Christiansen S. ACS Appl Mater Interfaces, 2016, 8: 8841–8848CrossRefGoogle Scholar
  28. 28.
    Min X, Jiang F, Qin F, Li Z, Tong J, Xiong S, Meng W, Zhou Y. ACS Appl Mater Interfaces, 2014, 6: 22628–22633CrossRefGoogle Scholar
  29. 29.
    van de Wiel HJ, Galagan Y, van Lammeren TJ, de Riet JFJ, Gilot J, Nagelkerke MGM, Lelieveld RHCAT, Shanmugam S, Pagudala A, Hui D, Groen WA. Nanotechnology, 2013, 24: 484014CrossRefGoogle Scholar
  30. 30.
    Krebs FC. Sol Energy Mater Sol Cells, 2009, 93: 394–412CrossRefGoogle Scholar
  31. 31.
    Tang A, Zhan C, Yao J, Zhou E. Adv Mater, 2017, 29: 1600013CrossRefGoogle Scholar
  32. 32.
    Tang A, Xiao B, Wang Y, Gao F, Tajima K, Bin H, Zhang ZG, Li Y, Wei Z, Zhou E. Adv Funct Mater, 2018, 28: 1704507CrossRefGoogle Scholar
  33. 33.
    Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174CrossRefGoogle Scholar
  34. 34.
    Geng Y, Tang A, Tajima K, Zeng Q, Zhou E. J Mater Chem A, 2019, 7: 64–96CrossRefGoogle Scholar
  35. 35.
    Worfolk BJ, Andrews SC, Park S, Reinspach J, Liu N, Toney MF, Mannsfeld SCB, Bao Z. Proc Natl Acad Sci USA, 2015, 112: 14138–14143CrossRefGoogle Scholar
  36. 36.
    Kim N, Kang H, Lee JH, Kee S, Lee SH, Lee K. Adv Mater, 2015, 27: 2317–2323CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Faculty of Materials Science and Chemical EngineeringNingbo UniversityNingboChina

Personalised recommendations