Skip to main content
Log in

A ratiometric fluorescent sensor for tracking Cu(I) fluctuation in endoplasmic reticulum

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A two-photon ratiometric fluorescent sensor for Cu+ in endoplasmic reticulum (ER), CNSB, was developed via coumarin/ASBD integration based on FRET mechanism. In solution, CNSB shows reversible, highly-specific ratiometric response to Cu+. Moreover, CNSB exhibits suitable Kd value, suggesting the possibility of detecting Cu+ in the living cells. The probe can enter the MCF-7 cells easily and specifically locates in the ER. The highly specific ratiometric response of CNSB toward Cu+ in MCF-7 cells provides the sensor the capacity to visualize both exogenous and endogenous Cu+ in the ER via fluorescence imaging. Next, CNSB was utilized to detect the fluctuation and distribution of Cu+ under ER stress in MCF-7 cells, which confirmed directly the relationship between Cu+ enhancement and ER stress. Meanwhile, the two-photon ability of coumarin facilitated the sensor to visualize Cu+ fluctuation via two-photon fluorescence imaging. In addition, the spatial distribution of Cu+ in the heart slice of the 14-day-old rat was demonstrated using CNSB. This study demonstrates the promising potential of CNSB in clarifying the Cu+-dependent signaling in the ER stress-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang CJ. Nat Chem Biol, 2015, 11: 744–747

    Article  CAS  PubMed  Google Scholar 

  2. Dixon SJ, Stockwell BR. Nat Chem Biol, 2014, 10: 9–17

    Article  CAS  PubMed  Google Scholar 

  3. Zhang DL, Wu J, Shah BN, Greutélaers KC, Ghosh MC, Ollivierre H, Su XZ, Thuma PE, Bedu-Addo G, Mockenhaupt FP, Gordeuk VR, Rouault TA. Science, 2018, 359: 1520–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Turski ML, Thiele DJ. J Biol Chem, 2009, 284: 717–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Valko M, Jomova K, Rhodes CJ, Kuca K, Musílek K. Arch Toxicol, 2016, 90: 1–37

    Article  CAS  PubMed  Google Scholar 

  6. Zhang M, Chen L, Wang J. Sci Sin-Chim, 2018, 48: 1385–1393

    Article  Google Scholar 

  7. Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, Knapp S, Xiao K, Campbell SL, Thiele DJ, Counter CM. Nature, 2014, 509: 492–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luo YF, Zhang J, Liu NQ, Luo Y, Zhao BL. Sci China Life Sci, 2011, 54: 527–534

    Article  CAS  PubMed  Google Scholar 

  9. Kaler SG. Nat Rev Neurol, 2011, 7: 15–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andersson M, Mattle D, Sitsel O, Klymchuk T, Nielsen AM, Møller LB, White SH, Nissen P, Gourdon P. Nat Struct Mol Biol, 2014, 21: 43–48

    Article  CAS  PubMed  Google Scholar 

  11. Bertini I, Rosato A. Cell Mol Life Sci, 2008, 65: 89–91

    Article  CAS  PubMed  Google Scholar 

  12. Lutsenko S, Gupta A, Burkhead JL, Zuzel V. Archive Biochem Biophys, 2008, 476: 22–32

    Article  CAS  Google Scholar 

  13. Bandmann O, Weiss KH, Kaler SG. Lancet Neurol, 2015, 14: 103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barnham KJ, Masters CL, Bush AI. Nat Rev Drug Discov, 2004, 3: 205–214

    Article  CAS  PubMed  Google Scholar 

  15. Barnham KJ, Bush AI. Chem Soc Rev, 2014, 43: 6727–6749

    Article  CAS  PubMed  Google Scholar 

  16. Müller UC, Deller T, Korte M. Nat Rev Neurosci, 2017, 18: 281–298

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Luo C, Shan C, You Q, Lu J, Elf S, Zhou Y, Wen Y, Vinkenborg JL, Fan J, Kang H, Lin R, Han D, Xie Y, Karpus J, Chen S, Ouyang S, Luan C, Zhang N, Ding H, Merkx M, Liu H, Chen J, Jiang H, He C. Nat Chem, 2015, 7: 968–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marafatto FF, Strader ML, Gonzalez-Holguera J, Schwartzberg A, Gilbert B, Peña J. Proc Natl Acad Sci USA, 2015, 112: 4600–4605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pavlova NN, Thompson CB. Cell Metabol, 2016, 23: 27–47

    Article  CAS  Google Scholar 

  20. Dodani SC, Leary SC, Cobine PA, Winge DR, Chang CJ. J Am Chem Soc, 2011, 133: 8606–8616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Domaille DW, Zeng L, Chang CJ. J Am Chem Soc, 2010, 132: 1194–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fahrni CJ. Curr Opin Chem Biol, 2013, 17: 656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Giuffrida ML, Rizzarelli E, Tomaselli GA, Satriano C, Trusso Sfrazzetto G. Chem Commun, 2014, 50: 9835–9838

    Article  CAS  Google Scholar 

  24. Yang L, McRae R, Henary MM, Patel R, Lai B, Vogt S, Fahrni CJ. Proc Natl Acad Sci USA, 2005, 102: 11179–11184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jung KH, Oh ET, Park HJ, Lee KH. Biosens Bioelectron, 2016, 85: 437–444

    Article  CAS  PubMed  Google Scholar 

  26. Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ. J Am Chem Soc, 2006, 128: 10–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T, Kim JS. J Am Chem Soc, 2009, 131: 2008–2012

    Article  CAS  PubMed  Google Scholar 

  28. Shi Y, Wang R, Yuan W, Liu Q, Shi M, Feng W, Wu Z, Hu K, Li F. ACS Appl Mater Interfaces, 2018, 10: 20377–20386

    Article  CAS  PubMed  Google Scholar 

  29. Park SY, Kim W, Park SH, Han J, Lee J, Kang C, Lee MH. Chem Commun, 2017, 53: 4457–4460

    Article  CAS  Google Scholar 

  30. Bai Y, Liu D, Han Z, Chen Y, Chen Z, Jiao Y, He W, Guo Z. Sci China Chem, 2018, 61: 1413–1422

    Article  CAS  Google Scholar 

  31. Zhang WJ, Liu T, Huo FJ, Ning P, Wen Y, Meng XM, Yin CX. Sci Sin-Chim, 2017, 47: 1022–1028

    Article  Google Scholar 

  32. Wu X, Shao A, Zhu S, Guo Z, Zhu W. Sci China Chem, 2016, 59: 62–69

    Article  CAS  Google Scholar 

  33. Xu YF, Lu F, Xu ZC, Cheng TY, Qian XH. Sci China Ser B-Chem, 2009, 52: 771–779

    Article  CAS  Google Scholar 

  34. Lim CS, Han JH, Kim CW, Kang MY, Kang DW, Cho BR. Chem Commun, 2011, 47: 7146–7148

    Article  CAS  Google Scholar 

  35. Cheng D, Pan Y, Wang L, Zeng Z, Yuan L, Zhang X, Chang YT. J Am Chem Soc, 2016, 139: 285–292

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Zhu C, Cen J, Li J, He W, Jiao Y, Guo Z. Chem Commun, 2013, 49: 7632–7634

    Article  CAS  Google Scholar 

  37. Makarov NS, Drobizhev M, Rebane A. Opt Express, 2008, 16: 4029–4047

    Article  CAS  PubMed  Google Scholar 

  38. Ishida S, Lee J, Thiele DJ, Herskowitz I. Proc Natl Acad Sci USA, 2002, 99: 14298–14302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rao RV, Bredesen DE. Curr Opin Cell Biol, 2004, 16: 653–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rabik CA, Dolan ME. Cancer Treatment Rev, 2007, 33: 9–23

    Article  CAS  Google Scholar 

  41. Minamino T, Komuro I, Kitakaze M. Circ Res, 2010, 107: 1071–1082

    Article  CAS  PubMed  Google Scholar 

  42. Minamino T, Kitakaze M. J Mol Cell Cardiol, 2010, 48: 1105–1110

    Article  CAS  PubMed  Google Scholar 

  43. Groenendyk J, Agellon LB, Michalak M. Annu Rev Physiol, 2013, 75: 49–67

    Article  CAS  PubMed  Google Scholar 

  44. Deegan S, Saveljeva S, Gorman AM, Samali A. Cell Mol Life Sci, 2013, 70: 2425–2441

    Article  CAS  PubMed  Google Scholar 

  45. Yang Z, He Y, Lee JH, Chae WS, Ren WX, Lee JH, Kang C, Kim JS. Chem Commun, 2014, 50: 11672–11675

    Article  CAS  Google Scholar 

  46. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Cell, 2017, 168: 692–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Urso E, Maffia M. J Vasc Res, 2015, 52: 172–196

    Article  CAS  PubMed  Google Scholar 

  48. Soprana HZ, Canes Souza L, Debbas V, Martins Laurindo FR. Exp Toxicol Pathol, 2011, 63: 229–236

    Article  CAS  Google Scholar 

  49. Hetz C, Martinon F, Rodriguez D, Glimcher LH. Physiol Rev, 2011, 91: 1219–1243

    Article  CAS  PubMed  Google Scholar 

  50. Tabas I, Ron D. Nat Cell Biol, 2011, 13: 184–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2015CB856300), the National Natural Science Foundation of China (21571099, 21731004) and the Natural Science Foundation of Jiangsu (BK20150054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuncong Chen or Weijiang He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Yuan, H., Chen, Y. et al. A ratiometric fluorescent sensor for tracking Cu(I) fluctuation in endoplasmic reticulum. Sci. China Chem. 62, 465–474 (2019). https://doi.org/10.1007/s11426-018-9424-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9424-8

Keywords

Navigation