Science China Chemistry

, Volume 62, Issue 4, pp 465–474 | Cite as

A ratiometric fluorescent sensor for tracking Cu(I) fluctuation in endoplasmic reticulum

  • Jungu Guo
  • Hao Yuan
  • Yuncong ChenEmail author
  • Zhongyan Chen
  • Menglong Zhao
  • Liang Zou
  • Yi Liu
  • Zhipeng Liu
  • Qiang Zhao
  • Zijian Guo
  • Weijiang HeEmail author


A two-photon ratiometric fluorescent sensor for Cu+ in endoplasmic reticulum (ER), CNSB, was developed via coumarin/ASBD integration based on FRET mechanism. In solution, CNSB shows reversible, highly-specific ratiometric response to Cu+. Moreover, CNSB exhibits suitable Kd value, suggesting the possibility of detecting Cu+ in the living cells. The probe can enter the MCF-7 cells easily and specifically locates in the ER. The highly specific ratiometric response of CNSB toward Cu+ in MCF-7 cells provides the sensor the capacity to visualize both exogenous and endogenous Cu+ in the ER via fluorescence imaging. Next, CNSB was utilized to detect the fluctuation and distribution of Cu+ under ER stress in MCF-7 cells, which confirmed directly the relationship between Cu+ enhancement and ER stress. Meanwhile, the two-photon ability of coumarin facilitated the sensor to visualize Cu+ fluctuation via two-photon fluorescence imaging. In addition, the spatial distribution of Cu+ in the heart slice of the 14-day-old rat was demonstrated using CNSB. This study demonstrates the promising potential of CNSB in clarifying the Cu+-dependent signaling in the ER stress-related diseases.


Cu(I) ratiometric two-photon endoplasmic reticulum-targeting endoplasmic reticulum stress heart tissue slice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Basic Research Program of China (2015CB856300), the National Natural Science Foundation of China (21571099, 21731004) and the Natural Science Foundation of Jiangsu (BK20150054).

Supplementary material

11426_2018_9424_MOESM1_ESM.doc (6.4 mb)
A Ratiometric Fluorescent Sensor for Tracking Cu(I) Fluctuation in Endoplasmic Reticulum


  1. 1.
    Chang CJ. Nat Chem Biol, 2015, 11: 744–747CrossRefGoogle Scholar
  2. 2.
    Dixon SJ, Stockwell BR. Nat Chem Biol, 2014, 10: 9–17CrossRefGoogle Scholar
  3. 3.
    Zhang DL, Wu J, Shah BN, Greutélaers KC, Ghosh MC, Ollivierre H, Su XZ, Thuma PE, Bedu-Addo G, Mockenhaupt FP, Gordeuk VR, Rouault TA. Science, 2018, 359: 1520–1523CrossRefGoogle Scholar
  4. 4.
    Turski ML, Thiele DJ. J Biol Chem, 2009, 284: 717–721CrossRefGoogle Scholar
  5. 5.
    Valko M, Jomova K, Rhodes CJ, Kuca K, Musílek K. Arch Toxicol, 2016, 90: 1–37CrossRefGoogle Scholar
  6. 6.
    Zhang M, Chen L, Wang J. Sci Sin-Chim, 2018, 48: 1385–1393CrossRefGoogle Scholar
  7. 7.
    Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, Knapp S, Xiao K, Campbell SL, Thiele DJ, Counter CM. Nature, 2014, 509: 492–496CrossRefGoogle Scholar
  8. 8.
    Luo YF, Zhang J, Liu NQ, Luo Y, Zhao BL. Sci China Life Sci, 2011, 54: 527–534CrossRefGoogle Scholar
  9. 9.
    Kaler SG. Nat Rev Neurol, 2011, 7: 15–29CrossRefGoogle Scholar
  10. 10.
    Andersson M, Mattle D, Sitsel O, Klymchuk T, Nielsen AM, Møller LB, White SH, Nissen P, Gourdon P. Nat Struct Mol Biol, 2014, 21: 43–48CrossRefGoogle Scholar
  11. 11.
    Bertini I, Rosato A. Cell Mol Life Sci, 2008, 65: 89–91CrossRefGoogle Scholar
  12. 12.
    Lutsenko S, Gupta A, Burkhead JL, Zuzel V. Archive Biochem Biophys, 2008, 476: 22–32CrossRefGoogle Scholar
  13. 13.
    Bandmann O, Weiss KH, Kaler SG. Lancet Neurol, 2015, 14: 103–113CrossRefGoogle Scholar
  14. 14.
    Barnham KJ, Masters CL, Bush AI. Nat Rev Drug Discov, 2004, 3: 205–214CrossRefGoogle Scholar
  15. 15.
    Barnham KJ, Bush AI. Chem Soc Rev, 2014, 43: 6727–6749CrossRefGoogle Scholar
  16. 16.
    Müller UC, Deller T, Korte M. Nat Rev Neurosci, 2017, 18: 281–298CrossRefGoogle Scholar
  17. 17.
    Wang J, Luo C, Shan C, You Q, Lu J, Elf S, Zhou Y, Wen Y, Vinkenborg JL, Fan J, Kang H, Lin R, Han D, Xie Y, Karpus J, Chen S, Ouyang S, Luan C, Zhang N, Ding H, Merkx M, Liu H, Chen J, Jiang H, He C. Nat Chem, 2015, 7: 968–979CrossRefGoogle Scholar
  18. 18.
    Marafatto FF, Strader ML, Gonzalez-Holguera J, Schwartzberg A, Gilbert B, Peña J. Proc Natl Acad Sci USA, 2015, 112: 4600–4605CrossRefGoogle Scholar
  19. 19.
    Pavlova NN, Thompson CB. Cell Metabol, 2016, 23: 27–47CrossRefGoogle Scholar
  20. 20.
    Dodani SC, Leary SC, Cobine PA, Winge DR, Chang CJ. J Am Chem Soc, 2011, 133: 8606–8616CrossRefGoogle Scholar
  21. 21.
    Domaille DW, Zeng L, Chang CJ. J Am Chem Soc, 2010, 132: 1194–1195CrossRefGoogle Scholar
  22. 22.
    Fahrni CJ. Curr Opin Chem Biol, 2013, 17: 656–662CrossRefGoogle Scholar
  23. 23.
    Giuffrida ML, Rizzarelli E, Tomaselli GA, Satriano C, Trusso Sfrazzetto G. Chem Commun, 2014, 50: 9835–9838CrossRefGoogle Scholar
  24. 24.
    Yang L, McRae R, Henary MM, Patel R, Lai B, Vogt S, Fahrni CJ. Proc Natl Acad Sci USA, 2005, 102: 11179–11184CrossRefGoogle Scholar
  25. 25.
    Jung KH, Oh ET, Park HJ, Lee KH. Biosens Bioelectron, 2016, 85: 437–444CrossRefGoogle Scholar
  26. 26.
    Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ. J Am Chem Soc, 2006, 128: 10–11CrossRefGoogle Scholar
  27. 27.
    Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T, Kim JS. J Am Chem Soc, 2009, 131: 2008–2012CrossRefGoogle Scholar
  28. 28.
    Shi Y, Wang R, Yuan W, Liu Q, Shi M, Feng W, Wu Z, Hu K, Li F. ACS Appl Mater Interfaces, 2018, 10: 20377–20386CrossRefGoogle Scholar
  29. 29.
    Park SY, Kim W, Park SH, Han J, Lee J, Kang C, Lee MH. Chem Commun, 2017, 53: 4457–4460CrossRefGoogle Scholar
  30. 30.
    Bai Y, Liu D, Han Z, Chen Y, Chen Z, Jiao Y, He W, Guo Z. Sci China Chem, 2018, 61: 1413–1422CrossRefGoogle Scholar
  31. 31.
    Zhang WJ, Liu T, Huo FJ, Ning P, Wen Y, Meng XM, Yin CX. Sci Sin-Chim, 2017, 47: 1022–1028Google Scholar
  32. 32.
    Wu X, Shao A, Zhu S, Guo Z, Zhu W. Sci China Chem, 2016, 59: 62–69CrossRefGoogle Scholar
  33. 33.
    Xu YF, Lu F, Xu ZC, Cheng TY, Qian XH. Sci China Ser B-Chem, 2009, 52: 771–779CrossRefGoogle Scholar
  34. 34.
    Lim CS, Han JH, Kim CW, Kang MY, Kang DW, Cho BR. Chem Commun, 2011, 47: 7146–7148CrossRefGoogle Scholar
  35. 35.
    Cheng D, Pan Y, Wang L, Zeng Z, Yuan L, Zhang X, Chang YT. J Am Chem Soc, 2016, 139: 285–292CrossRefGoogle Scholar
  36. 36.
    Chen Y, Zhu C, Cen J, Li J, He W, Jiao Y, Guo Z. Chem Commun, 2013, 49: 7632–7634CrossRefGoogle Scholar
  37. 37.
    Makarov NS, Drobizhev M, Rebane A. Opt Express, 2008, 16: 4029–4047CrossRefGoogle Scholar
  38. 38.
    Ishida S, Lee J, Thiele DJ, Herskowitz I. Proc Natl Acad Sci USA, 2002, 99: 14298–14302CrossRefGoogle Scholar
  39. 39.
    Rao RV, Bredesen DE. Curr Opin Cell Biol, 2004, 16: 653–662CrossRefGoogle Scholar
  40. 40.
    Rabik CA, Dolan ME. Cancer Treatment Rev, 2007, 33: 9–23CrossRefGoogle Scholar
  41. 41.
    Minamino T, Komuro I, Kitakaze M. Circ Res, 2010, 107: 1071–1082CrossRefGoogle Scholar
  42. 42.
    Minamino T, Kitakaze M. J Mol Cell Cardiol, 2010, 48: 1105–1110CrossRefGoogle Scholar
  43. 43.
    Groenendyk J, Agellon LB, Michalak M. Annu Rev Physiol, 2013, 75: 49–67CrossRefGoogle Scholar
  44. 44.
    Deegan S, Saveljeva S, Gorman AM, Samali A. Cell Mol Life Sci, 2013, 70: 2425–2441CrossRefGoogle Scholar
  45. 45.
    Yang Z, He Y, Lee JH, Chae WS, Ren WX, Lee JH, Kang C, Kim JS. Chem Commun, 2014, 50: 11672–11675CrossRefGoogle Scholar
  46. 46.
    Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Cell, 2017, 168: 692–706CrossRefGoogle Scholar
  47. 47.
    Urso E, Maffia M. J Vasc Res, 2015, 52: 172–196CrossRefGoogle Scholar
  48. 48.
    Soprana HZ, Canes Souza L, Debbas V, Martins Laurindo FR. Exp Toxicol Pathol, 2011, 63: 229–236CrossRefGoogle Scholar
  49. 49.
    Hetz C, Martinon F, Rodriguez D, Glimcher LH. Physiol Rev, 2011, 91: 1219–1243CrossRefGoogle Scholar
  50. 50.
    Tabas I, Ron D. Nat Cell Biol, 2011, 13: 184–190CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jungu Guo
    • 1
  • Hao Yuan
    • 1
  • Yuncong Chen
    • 1
    Email author
  • Zhongyan Chen
    • 1
  • Menglong Zhao
    • 2
  • Liang Zou
    • 2
  • Yi Liu
    • 3
  • Zhipeng Liu
    • 3
  • Qiang Zhao
    • 2
  • Zijian Guo
    • 1
  • Weijiang He
    • 1
    Email author
  1. 1.State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
  2. 2.Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts & TelecommunicationsNanjingChina
  3. 3.Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)NanjingChina

Personalised recommendations