Science China Chemistry

, Volume 62, Issue 4, pp 515–520 | Cite as

Ion-vacancy coupled charge transfer model for ion transport in concentrated solutions

  • Yu Gao
  • Jun HuangEmail author
  • Yuwen Liu
  • Jawei Yan
  • Bingwei Mao
  • Shengli ChenEmail author


We present a conceptual framework for understanding and formulating ion transport in concentrated solutions, which pictures the ion transport as an ion-vacancy coupled charge transfer reaction. A key element in this picture is that the transport of an ion from an occupied to unoccupied site involves a transition state which exerts double volume exclusion. An ab initio random walk model is proposed to describe this process. Subsequent coarse-graining results in a continuum formula as a function of chemical potentials of the constituents, which are further derived from a lattice-gas model. The subtlety here is that what has been taken to be the chemical potential of the ion in the past is actually that of the ion-vacancy couple. By aid of this new concept, the driving force of ion transport is essentially the chemical affinity of the ion-vacancy coupled charge transfer reaction, which is a useful concept to unify transport and reaction, two fundamental processes in electrochemistry. This phenomenological model is parameterized for a specific material by the aid of first-principles calculations. Moreover, its extension to multiple-component systems is discussed.


concentrated solutions ion dynamics ion volume effect chemical affinity ion-vacancy couple 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21673163, 21832004, 21802170). J. Huang appreciates financial support from Central South University (502045001, 20180020050002).


  1. 1.
    Richey FW, Dyatkin B, Gogotsi Y, Elabd YA. J Am Chem Soc, 2013, 135: 12818–12826CrossRefGoogle Scholar
  2. 2.
    Simon P, Gogotsi Y. Acc Chem Res, 2013, 46: 1094–1103CrossRefGoogle Scholar
  3. 3.
    Lee AA, Kondrat S, Kornyshev AA. Phys Rev Lett, 2014, 113: 048701CrossRefGoogle Scholar
  4. 4.
    Kornyshev AA, Spohr E, Vorotyntsev MA. Electrochemical Interfaces: At the Border line. New York: Wiley, 2002Google Scholar
  5. 5.
    Bockris JO, Reddy AKN, Gamboa-Aldeco ME. Modern electrochemistry 2A. 2nd Ed. New York: Kluwer Academic Publishers, 2002CrossRefGoogle Scholar
  6. 6.
    Lee AA, Colby RH, Kornyshev AA. Soft Matter, 2013, 9: 3767–3776CrossRefGoogle Scholar
  7. 7.
    Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M. Science, 2002, 297: 983–987CrossRefGoogle Scholar
  8. 8.
    Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, de Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M. Science, 1999, 284: 1340–1344CrossRefGoogle Scholar
  9. 9.
    Wang X, Mehandzhiyski AY, Arstad B, Van Aken KL, Mathis TS, Gallegos A, Tian Z, Ren D, Sheridan E, Grimes BA, Jiang DE, Wu J, Gogotsi Y, Chen D. J Am Chem Soc, 2017, 139: 18681–18687CrossRefGoogle Scholar
  10. 10.
    Fedorov MV, Kornyshev AA. Chem Rev, 2014, 114: 2978–3036CrossRefGoogle Scholar
  11. 11.
    Van Aken KL, Beidaghi M, Gogotsi Y. Angew Chem Int Ed, 2015, 54: 4806–4809CrossRefGoogle Scholar
  12. 12.
    Giordani V, Tozier D, Tan H, Burke CM, Gallant BM, Uddin J, Greer JR, McCloskey BD, Chase GV, Addison D. J Am Chem Soc, 2016, 138: 2656–2663CrossRefGoogle Scholar
  13. 13.
    Gadzuric S, Suh C, Gaune-Escard M, Rajan K. Metall Mat Trans A, 2006, 37: 3411–3414CrossRefGoogle Scholar
  14. 14.
    Zhao Y, Daemen LL. J Am Chem Soc, 2012, 134: 15042–15047CrossRefGoogle Scholar
  15. 15.
    Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C. J Am Chem Soc, 2013, 135: 975–978CrossRefGoogle Scholar
  16. 16.
    Fan L, Wei S, Li S, Li Q, Lu Y. Adv Energy Mater, 2018, 8: 1702657CrossRefGoogle Scholar
  17. 17.
    Cogswell DA, Bazant MZ. Nano Lett, 2013, 13: 3036–3041CrossRefGoogle Scholar
  18. 18.
    Malik R, Zhou F, Ceder G. Nat Mater, 2011, 10: 587–590CrossRefGoogle Scholar
  19. 19.
    Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K. Science, 2015, 350: 938–943CrossRefGoogle Scholar
  20. 20.
    Kilic MS, Bazant MZ, Ajdari A. Phys Rev E, 2007, 75: 021503CrossRefGoogle Scholar
  21. 21.
    Zhao H. Phys Rev E, 2001, 84: 051504CrossRefGoogle Scholar
  22. 22.
    Bazant MZ, Kilic MS, Storey BD, Ajdari A. Adv Colloid Interface Sci, 2009, 152: 48–88CrossRefGoogle Scholar
  23. 23.
    Kornyshev AA. J Phys Chem B, 2007, 111: 5545–5557CrossRefGoogle Scholar
  24. 24.
    Borukhov I, Andelman D, Orland H. Phys Rev Lett, 1997, 79: 435–438CrossRefGoogle Scholar
  25. 25.
    Wang H, Thiele A, Pilon L. J Phys Chem C, 2013, 117: 18286–18297CrossRefGoogle Scholar
  26. 26.
    Ferguson TR, Bazant MZ. J Electrochem Soc, 2012, 159: A1967–A1985CrossRefGoogle Scholar
  27. 27.
    Lee AA, Kondrat S, Vella D, Goriely A. Phys Rev Lett, 2015, 115: 106101CrossRefGoogle Scholar
  28. 28.
    Bikerman JJ. London Edinburgh Dublin Philos Mag J Sci, 1942, 33: 384–397CrossRefGoogle Scholar
  29. 29.
    Riess I, Maier J. Phys Rev Lett, 2008, 100: 20590CrossRefGoogle Scholar
  30. 30.
    Cahn JW, Hilliard JE. J Chem Phys, 1958, 28: 258–267CrossRefGoogle Scholar
  31. 31.
    Braga MH, Ferreira JA, Stockhausen V, Oliveira JE, El-Azab A. J Mater Chem A, 2014, 2: 5470–5480CrossRefGoogle Scholar
  32. 32.
    Ravikumar B, Mynam M, Rai B. J Phys Chem C, 2018, 122: 8173–8181CrossRefGoogle Scholar
  33. 33.
    Maldonado-Manso P, Losilla ER, Martínez-Lara M, Aranda MAG, Bruque S, Mouahid FE, Zahir M. Chem Mater, 2003, 15: 1879–1885CrossRefGoogle Scholar
  34. 34.
    Fu J. J Am Ceram Soc, 1997, 80: 1901–1903CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Zhao Y, Chen C. Phys Rev B, 2013, 87: 134303CrossRefGoogle Scholar
  36. 36.
    Abbott AP, Harris RC, Ryder KS. J Phys Chem B, 2007, 111: 4910–4913CrossRefGoogle Scholar
  37. 37.
    Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G. Phys Rev B, 2004, 70: 235121CrossRefGoogle Scholar
  38. 38.
    Morgan D, van der ven A, Ceder G. Electrochem Solid-State Lett, 2004, 7: A30CrossRefGoogle Scholar
  39. 39.
    Sun Y, Lu X, Xiao R, Li H, Huang X. Chem Mater, 2012, 24: 4693–4703CrossRefGoogle Scholar
  40. 40.
    Islam MS, Driscoll DJ, Fisher CAJ, Slater PR. Chem Mater, 2005, 17: 5085–5092CrossRefGoogle Scholar
  41. 41.
    Leonardi E, Angeli C. J Phys Chem B, 2010, 114: 151–164CrossRefGoogle Scholar
  42. 42.
    Krishna R, Wesselingh JA. Chem Eng Sci, 1997, 52: 861–911CrossRefGoogle Scholar
  43. 43.
    Krishna R, van Baten JM. Chem Eng Sci, 2009, 64: 3159–3178CrossRefGoogle Scholar
  44. 44.
    Lee AA, Kondrat S, Oshanin G A, Kornyshev A. Nanotechnology, 2014, 25: 315401CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Electrochemical Power Sources, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of ChemistryWuhan UniversityWuhanChina
  2. 2.Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  3. 3.State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of ChemistryXiamen UniversityXiamenChina

Personalised recommendations