Skip to main content
Log in

Ion-vacancy coupled charge transfer model for ion transport in concentrated solutions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We present a conceptual framework for understanding and formulating ion transport in concentrated solutions, which pictures the ion transport as an ion-vacancy coupled charge transfer reaction. A key element in this picture is that the transport of an ion from an occupied to unoccupied site involves a transition state which exerts double volume exclusion. An ab initio random walk model is proposed to describe this process. Subsequent coarse-graining results in a continuum formula as a function of chemical potentials of the constituents, which are further derived from a lattice-gas model. The subtlety here is that what has been taken to be the chemical potential of the ion in the past is actually that of the ion-vacancy couple. By aid of this new concept, the driving force of ion transport is essentially the chemical affinity of the ion-vacancy coupled charge transfer reaction, which is a useful concept to unify transport and reaction, two fundamental processes in electrochemistry. This phenomenological model is parameterized for a specific material by the aid of first-principles calculations. Moreover, its extension to multiple-component systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Richey FW, Dyatkin B, Gogotsi Y, Elabd YA. J Am Chem Soc, 2013, 135: 12818–12826

    Article  CAS  PubMed  Google Scholar 

  2. Simon P, Gogotsi Y. Acc Chem Res, 2013, 46: 1094–1103

    Article  CAS  PubMed  Google Scholar 

  3. Lee AA, Kondrat S, Kornyshev AA. Phys Rev Lett, 2014, 113: 048701

    Article  CAS  PubMed  Google Scholar 

  4. Kornyshev AA, Spohr E, Vorotyntsev MA. Electrochemical Interfaces: At the Border line. New York: Wiley, 2002

    Google Scholar 

  5. Bockris JO, Reddy AKN, Gamboa-Aldeco ME. Modern electrochemistry 2A. 2nd Ed. New York: Kluwer Academic Publishers, 2002

    Book  Google Scholar 

  6. Lee AA, Colby RH, Kornyshev AA. Soft Matter, 2013, 9: 3767–3776

    Article  CAS  Google Scholar 

  7. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M. Science, 2002, 297: 983–987

    Article  CAS  PubMed  Google Scholar 

  8. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, de Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M. Science, 1999, 284: 1340–1344

    Article  CAS  Google Scholar 

  9. Wang X, Mehandzhiyski AY, Arstad B, Van Aken KL, Mathis TS, Gallegos A, Tian Z, Ren D, Sheridan E, Grimes BA, Jiang DE, Wu J, Gogotsi Y, Chen D. J Am Chem Soc, 2017, 139: 18681–18687

    Article  CAS  PubMed  Google Scholar 

  10. Fedorov MV, Kornyshev AA. Chem Rev, 2014, 114: 2978–3036

    Article  CAS  PubMed  Google Scholar 

  11. Van Aken KL, Beidaghi M, Gogotsi Y. Angew Chem Int Ed, 2015, 54: 4806–4809

    Article  CAS  Google Scholar 

  12. Giordani V, Tozier D, Tan H, Burke CM, Gallant BM, Uddin J, Greer JR, McCloskey BD, Chase GV, Addison D. J Am Chem Soc, 2016, 138: 2656–2663

    Article  CAS  PubMed  Google Scholar 

  13. Gadzuric S, Suh C, Gaune-Escard M, Rajan K. Metall Mat Trans A, 2006, 37: 3411–3414

    Article  Google Scholar 

  14. Zhao Y, Daemen LL. J Am Chem Soc, 2012, 134: 15042–15047

    Article  CAS  PubMed  Google Scholar 

  15. Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C. J Am Chem Soc, 2013, 135: 975–978

    Article  CAS  PubMed  Google Scholar 

  16. Fan L, Wei S, Li S, Li Q, Lu Y. Adv Energy Mater, 2018, 8: 1702657

    Article  CAS  Google Scholar 

  17. Cogswell DA, Bazant MZ. Nano Lett, 2013, 13: 3036–3041

    Article  CAS  PubMed  Google Scholar 

  18. Malik R, Zhou F, Ceder G. Nat Mater, 2011, 10: 587–590

    Article  CAS  PubMed  Google Scholar 

  19. Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K. Science, 2015, 350: 938–943

    Article  CAS  PubMed  Google Scholar 

  20. Kilic MS, Bazant MZ, Ajdari A. Phys Rev E, 2007, 75: 021503

    Article  CAS  Google Scholar 

  21. Zhao H. Phys Rev E, 2001, 84: 051504

    Article  CAS  Google Scholar 

  22. Bazant MZ, Kilic MS, Storey BD, Ajdari A. Adv Colloid Interface Sci, 2009, 152: 48–88

    Article  CAS  PubMed  Google Scholar 

  23. Kornyshev AA. J Phys Chem B, 2007, 111: 5545–5557

    Article  CAS  PubMed  Google Scholar 

  24. Borukhov I, Andelman D, Orland H. Phys Rev Lett, 1997, 79: 435–438

    Article  CAS  Google Scholar 

  25. Wang H, Thiele A, Pilon L. J Phys Chem C, 2013, 117: 18286–18297

    Article  CAS  Google Scholar 

  26. Ferguson TR, Bazant MZ. J Electrochem Soc, 2012, 159: A1967–A1985

    Article  CAS  Google Scholar 

  27. Lee AA, Kondrat S, Vella D, Goriely A. Phys Rev Lett, 2015, 115: 106101

    Article  CAS  PubMed  Google Scholar 

  28. Bikerman JJ. London Edinburgh Dublin Philos Mag J Sci, 1942, 33: 384–397

    Article  CAS  Google Scholar 

  29. Riess I, Maier J. Phys Rev Lett, 2008, 100: 20590

    Article  CAS  Google Scholar 

  30. Cahn JW, Hilliard JE. J Chem Phys, 1958, 28: 258–267

    Article  CAS  Google Scholar 

  31. Braga MH, Ferreira JA, Stockhausen V, Oliveira JE, El-Azab A. J Mater Chem A, 2014, 2: 5470–5480

    Article  CAS  Google Scholar 

  32. Ravikumar B, Mynam M, Rai B. J Phys Chem C, 2018, 122: 8173–8181

    Article  CAS  Google Scholar 

  33. Maldonado-Manso P, Losilla ER, Martínez-Lara M, Aranda MAG, Bruque S, Mouahid FE, Zahir M. Chem Mater, 2003, 15: 1879–1885

    Article  CAS  Google Scholar 

  34. Fu J. J Am Ceram Soc, 1997, 80: 1901–1903

    Article  CAS  Google Scholar 

  35. Zhang Y, Zhao Y, Chen C. Phys Rev B, 2013, 87: 134303

    Article  CAS  Google Scholar 

  36. Abbott AP, Harris RC, Ryder KS. J Phys Chem B, 2007, 111: 4910–4913

    Article  CAS  PubMed  Google Scholar 

  37. Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G. Phys Rev B, 2004, 70: 235121

    Article  CAS  Google Scholar 

  38. Morgan D, van der ven A, Ceder G. Electrochem Solid-State Lett, 2004, 7: A30

    Article  CAS  Google Scholar 

  39. Sun Y, Lu X, Xiao R, Li H, Huang X. Chem Mater, 2012, 24: 4693–4703

    Article  CAS  Google Scholar 

  40. Islam MS, Driscoll DJ, Fisher CAJ, Slater PR. Chem Mater, 2005, 17: 5085–5092

    Article  CAS  Google Scholar 

  41. Leonardi E, Angeli C. J Phys Chem B, 2010, 114: 151–164

    Article  CAS  PubMed  Google Scholar 

  42. Krishna R, Wesselingh JA. Chem Eng Sci, 1997, 52: 861–911

    Article  CAS  Google Scholar 

  43. Krishna R, van Baten JM. Chem Eng Sci, 2009, 64: 3159–3178

    Article  CAS  Google Scholar 

  44. Lee AA, Kondrat S, Oshanin G A, Kornyshev A. Nanotechnology, 2014, 25: 315401

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21673163, 21832004, 21802170). J. Huang appreciates financial support from Central South University (502045001, 20180020050002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Huang or Shengli Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Huang, J., Liu, Y. et al. Ion-vacancy coupled charge transfer model for ion transport in concentrated solutions. Sci. China Chem. 62, 515–520 (2019). https://doi.org/10.1007/s11426-018-9423-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9423-8

Keywords

Navigation