Science China Chemistry

, Volume 62, Issue 4, pp 434–439 | Cite as

Photogenerated singlet oxygen over zeolite-confined carbon dots for shape selective catalysis

  • Qiu-Ying Yu
  • Guang-Yao Zhai
  • Tian-Lu Cui
  • Hui Su
  • Zhong-Hua Xue
  • Jun-Jun Zhang
  • Peter J. Pauzauskie
  • Shin-ichi Hirano
  • Xin-Hao Li
  • Jie-Sheng ChenEmail author


Singlet oxygen as an activated oxygen species played an important role in organic synthesis. Suitable catalyst for converting ubiquitous oxygen molecule to singlet oxygen under mild conditions has attracted a wide range of attention. Herein, carbon dots have been confined into mesopores of silicalite-1 nanocrystals framework and acted as active sites for generation of singlet oxygen. The high oxygen-adsorption capacity of zeolite nanocrystals facilitated the photocatalytic generation rate of singlet oxygen, outpacing the free-standing carbon dots for 14-fold. The integrated carbon dot-zeolite nanocrystal hybrid also exhibited a special size-dependent selectivity for organic synthesis by using the in situ formed and confined singlet oxygen as active oxygen species.


zeolite photocatalysis singlet oxygen carbon dots shape-selective 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21720102002, 21722103, 21673140), Shanghai Basic Research Program (16JC1401600), SJTU-MPI partner group, Shanghai Eastern Scholar Program and Shanghai Rising-Star Program (16QA1402100). We thank Prof. Huan-Ming Xiong and his coworkers (Department of Chemistry, Fudan University, Shanghai 200433, China) for providing CD for this study.

Supplementary material

11426_2018_9417_MOESM1_ESM.pdf (2.8 mb)
Photogenerated singlet oxygen over zeolite-confined carbon dots for shape selective catalysis


  1. 1.
    Clennan EL, Pace A. Tetrahedron, 2005, 61: 6665–6691CrossRefGoogle Scholar
  2. 2.
    Goncalves ES, Ogilby PR. Langmuir, 2008, 24: 9056–9065CrossRefGoogle Scholar
  3. 3.
    Scurlock RD, Wang B, Ogilby PR, Sheats JR, Clough RL. J Am Chem Soc, 1995, 117: 10194–10202CrossRefGoogle Scholar
  4. 4.
    Scurlock RD, Kristiansen M, Ogilby PR, Taylor VL, Clough RL. Polym Degrad Stabil, 1998, 60: 145–159CrossRefGoogle Scholar
  5. 5.
    Redmond RW, Kochevar IE. Photochem Photobiol, 2006, 82: 1178–1186CrossRefGoogle Scholar
  6. 6.
    Davies MJ. Biochem Biophys Res Commun, 2003, 305: 761–770CrossRefGoogle Scholar
  7. 7.
    Long R, Mao K, Ye X, Yan W, Huang Y, Wang J, Fu Y, Wang X, Wu X, Xie Y, Xiong Y. J Am Chem Soc, 2013, 135: 3200–3207CrossRefGoogle Scholar
  8. 8.
    Hou L, Zhang X, Pijper TC, Browne WR, Feringa BL. J Am Chem Soc, 2014, 136: 910–913CrossRefGoogle Scholar
  9. 9.
    Xiao L, Gu L, Howell SB, Sailor MJ. ACS Nano, 2011, 5: 3651–3659CrossRefGoogle Scholar
  10. 10.
    Smith BE, Roder PB, Hanson JL, Manandhar S, Devaraj A, Perea DE, Kim WJ, Kilcoyne ALD, Pauzauskie PJ. ACS Photonics, 2015, 2: 559–564CrossRefGoogle Scholar
  11. 11.
    Lang X, Chen X, Zhao J. Chem Soc Rev, 2014, 43: 473–486CrossRefGoogle Scholar
  12. 12.
    Ke W, Cui T, Yu Q, Wang M, Lv L, Wang H, Jiang Z, Li XH, Chen J. Nano Res, 2018, 11: 874–881CrossRefGoogle Scholar
  13. 13.
    Zhang K, Kopetzki D, Seeberger PH, Antonietti M, Vilela F. Angew Chem Int Ed, 2013, 52: 1432–1436CrossRefGoogle Scholar
  14. 14.
    Wang ZJ, Ghasimi S, Landfester K, Zhang KAI. Adv Mater, 2015, 27: 6265–6270CrossRefGoogle Scholar
  15. 15.
    Huang W, Ma BC, Lu H, Li R, Wang L, Landfester K, Zhang KAI. ACS Catal, 2017, 7: 5438–5442CrossRefGoogle Scholar
  16. 16.
    Ogilby PR. Chem Soc Rev, 2010, 39: 3181–3209CrossRefGoogle Scholar
  17. 17.
    DeRosa M. Coord Chem Rev, 2002, 233–234: 351–371CrossRefGoogle Scholar
  18. 18.
    Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y. J Am Chem Soc, 2015, 137: 11376–11382CrossRefGoogle Scholar
  19. 19.
    Montagnon T, Tofi M, Vassilikogiannakis G. Acc Chem Res, 2008, 41: 1001–1011CrossRefGoogle Scholar
  20. 20.
    Kovalev D, Fujii M. Adv Mater, 2005, 17: 2531–2544CrossRefGoogle Scholar
  21. 21.
    Cui TL, Ke WY, Zhang WB, Wang HH, Li XH, Chen JS. Angew Chem Int Ed, 2016, 55: 9178–9182CrossRefGoogle Scholar
  22. 22.
    Liu J, Wang N, Yu Y, Yan Y, Zhang H, Li J, Yu J. Sci Adv, 2017, 3: e1603171Google Scholar
  23. 23.
    Xiu Y, Gao Q, Li GD, Wang KX, Chen JS. Inorg Chem, 2010, 49: 5859–5867CrossRefGoogle Scholar
  24. 24.
    Gu ZG, Li DJ, Zheng C, Kang Y, Wöll C, Zhang J. Angew Chem Int Ed, 2017, 56: 6853–6858CrossRefGoogle Scholar
  25. 25.
    Jha VK, Matsuda M, Miyake M. J Hazard Mater, 2008, 160: 148–153CrossRefGoogle Scholar
  26. 26.
    Kim JH, Lee CH, Kim WS, Lee JS, Kim JT, Suh JK, Lee JM. J Chem Eng Data, 2003, 48: 137–141CrossRefGoogle Scholar
  27. 27.
    Cui TL, Li XH, Lv LB, Wang KX, Su J, Chen JS. Chem Commun, 2015, 51: 12563–12566CrossRefGoogle Scholar
  28. 28.
    Wei Y, Liu J, Zhao Z, Chen Y, Xu C, Duan A, Jiang G, He H. Angew Chem Int Ed, 2011, 50: 2326–2329CrossRefGoogle Scholar
  29. 29.
    Chen YZ, Wang ZU, Wang H, Lu J, Yu SH, Jiang HL. J Am Chem Soc, 2017, 139: 2035–2044CrossRefGoogle Scholar
  30. 30.
    Ding H, Yu SB, Wei JS, Xiong HM. ACS Nano, 2016, 10: 484–491CrossRefGoogle Scholar
  31. 31.
    Chen LH, Li XY, Rooke JC, Zhang YH, Yang XY, Tang Y, Xiao FS, Su BL. J Mater Chem, 2012, 22: 17381–17403CrossRefGoogle Scholar
  32. 32.
    Serrano DP, Escola JM, Pizarro P. Chem Soc Rev, 2013, 42: 4004–4035CrossRefGoogle Scholar
  33. 33.
    Alcántara R, Ortiz GF, Lavela P, Tirado JL, Stoyanova R, Zhecheva E. Chem Mater, 2006, 18: 2293–2301CrossRefGoogle Scholar
  34. 34.
    Li XH, Wang X, Antonietti M. ACS Catal, 2012, 2: 2082–2086CrossRefGoogle Scholar
  35. 35.
    Wang H, Sun X, Li D, Zhang X, Chen S, Shao W, Tian Y, Xie Y. J Am Chem Soc, 2017, 139: 2468–2473CrossRefGoogle Scholar
  36. 36.
    Zhang KX, Su H, Wang HH, Zhang JJ, Zhao SY, Lei W, Wei X, Li XH, Chen JS. Adv Sci, 2018, 5: 180062Google Scholar
  37. 37.
    Miyaji A, Gabe Y, Kohno M, Baba T. J Clin Biochem Nutr, 2017, 60: 86–92CrossRefGoogle Scholar
  38. 38.
    Liu L, Zhang S, Fu X, Yan CH. Chem Commun, 2011, 47: 10148–10150CrossRefGoogle Scholar
  39. 39.
    Ushakov DB, Gilmore K, Kopetzki D, McQuade DT, Seeberger PH. Angew Chem Int Ed, 2014, 53: 557–561CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qiu-Ying Yu
    • 1
  • Guang-Yao Zhai
    • 1
  • Tian-Lu Cui
    • 1
  • Hui Su
    • 1
  • Zhong-Hua Xue
    • 1
  • Jun-Jun Zhang
    • 1
  • Peter J. Pauzauskie
    • 3
  • Shin-ichi Hirano
    • 2
  • Xin-Hao Li
    • 1
  • Jie-Sheng Chen
    • 1
    Email author
  1. 1.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Hirano Institute for Materials InnovationShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of Materials Science & EngineeringSeattleUSA

Personalised recommendations