Skip to main content
Log in

Halogen effects on phenylethynyl palladium(II) complexes for living polymerization of isocyanides: a combined experimental and computational investigation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Phenylethynyl palladium(II) complexes have proven to be effective catalysts for coordination polymerization of isocyanides. In this work, two new phenylethynyl palladium(II) initiators bearing bromide (1b) and iodide (1c) were synthesized and applied for living polymerization of aryl and alkyl isocyanides. The coordinated halogen anions can significantly influence the kinetics of polymerization, with the observed order of reaction rates being 1c (I)>1b (Br)>1a (Cl). Impressively, 1c not only accelerates the reaction rate in both the initiation stage and propagation stage, but also can polymerize less active monomers that cannot be reacted by 1a. DFT calculations were then employed to understand the detailed mechanism and the halogen effects in this insertion polymerization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakano T, Okamoto Y. Chem Rev, 2001, 101: 4013–4038

    Article  CAS  PubMed  Google Scholar 

  2. Cornelissen JJLM, Rowan AE, Nolte RJM, Sommerdijk NAJM. Chem Rev, 2001, 101: 4039–4070

    Article  CAS  PubMed  Google Scholar 

  3. Elemans JAAW, Rowan AE, Nolte RJM. J Mater Chem, 2003, 13: 2661–2670

    Article  CAS  Google Scholar 

  4. de Witte PAJ, Castriciano M, Cornelissen JJLM, Monsù Scolaro L, Nolte RJM, Rowan AE. Chem Eur J, 2003, 9: 1775–1781

    Article  CAS  PubMed  Google Scholar 

  5. Yashima E, Maeda K, Furusho Y. Acc Chem Res, 2008, 41: 1166–1180

    Article  CAS  PubMed  Google Scholar 

  6. Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Chem Rev, 2009, 109: 6102–6211

    Article  CAS  PubMed  Google Scholar 

  7. Le Gac S, Schwartz E, Koepf M, Cornelissen JJLM, Rowan AE, Nolte RJM. Chem Eur J, 2010, 16: 6176–6186

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz E, Koepf M, Kitto HJ, Nolte RJM, Rowan AE. Polym Chem, 2011, 2: 33–47

    Article  CAS  Google Scholar 

  9. Yamamoto T, Murakami R, Suginome M. J Am Chem Soc, 2017, 139: 2557–2560

    Article  CAS  PubMed  Google Scholar 

  10. Nagata Y, Kuroda T, Takagi K, Suginome M. Chem Sci, 2014, 5: 4953–4956

    Article  CAS  Google Scholar 

  11. Miyabe T, Iida H, Ohnishi A, Yashima E. Chem Sci, 2012, 3: 863–867

    Article  CAS  Google Scholar 

  12. Foster S, Finlayson CE, Keivanidis PE, Huang YS, Hwang I, Friend RH, Otten MBJ, Lu LP, Schwartz E, Nolte RJM, Rowan AE. Macromolecules, 2009, 42: 2023–2030

    Article  CAS  Google Scholar 

  13. Miyabe T, Iida H, Banno M, Yamaguchi T, Yashima E. Macromolecules, 2011, 44: 8687–8692

    Article  CAS  Google Scholar 

  14. Hu G, Li W, Hu Y, Xu A, Yan J, Liu L, Zhang X, Liu K, Zhang A. Macromolecules, 2013, 46: 1124–1132

    Article  CAS  Google Scholar 

  15. Nishikawa T, Nagata Y, Suginome M. ACS Macro Lett, 2017, 6: 431–435

    Article  CAS  Google Scholar 

  16. van Buul AM, Schwartz E, Brocorens P, Koepf M, Beljonne D, Maan JC, Christianen PCM, Kouwer PHJ, Nolte RJM, Engelkamp H, Blank K, Rowan AE. Chem Sci, 2013, 4: 2357–2363

    Article  CAS  Google Scholar 

  17. Cahoon CR, Bielawski CW. Coord Chem Rev, 2018, 374: 261–278

    Article  CAS  Google Scholar 

  18. Drenth W, Nolte RJM. Acc Chem Res, 1979, 12: 30–35

    Article  CAS  Google Scholar 

  19. Kamer PCJ, Nolte RJM, Drenth W. J Am Chem Soc, 1988, 110: 6818–6825

    Article  CAS  Google Scholar 

  20. Deming TJ, Novak BM. Macromolecules, 1991, 24: 6043–6045

    Article  CAS  Google Scholar 

  21. Deming TJ, Novak BM. J Am Chem Soc, 1993, 115: 9101–9111

    Article  CAS  Google Scholar 

  22. Asaoka S, Joza A, Minagawa S, Song L, Suzuki Y, Iyoda T. ACS Macro Lett, 2013, 2: 906–911

    Article  CAS  Google Scholar 

  23. Wu ZQ, Ono RJ, Chen Z, Bielawski CW. J Am Chem Soc, 2010, 132: 14000–14001

    Article  CAS  PubMed  Google Scholar 

  24. Wu ZQ, Radcliffe JD, Ono RJ, Chen Z, Li Z, Bielawski CW. Polym Chem, 2012, 3: 874–881

    Article  CAS  Google Scholar 

  25. Wu ZQ, Qi CG, Liu N, Wang Y, Yin J, Zhu YY, Qiu LZ, Lu HB. J Polym Sci Part A-Polym Chem, 2013, 51: 2939–2947

    Article  CAS  Google Scholar 

  26. Liu N, Qi CG, Wang Y, Liu DF, Yin J, Zhu YY, Wu ZQ. Macromolecules, 2013, 46: 7753–7758

    Article  CAS  Google Scholar 

  27. Wu ZQ, Liu DF, Wang Y, Liu N, Yin J, Zhu YY, Qiu LZ, Ding YS. Polym Chem, 2013, 4: 4588–4595

    Article  CAS  Google Scholar 

  28. Yu ZP, Liu N, Yang L, Jiang ZQ, Wu ZQ. Macromolecules, 2017, 50: 3204–3214

    Article  CAS  Google Scholar 

  29. Onitsuka K, Mori T, Yamamoto M, Takei F, Takahashi S. Macromolecules, 2006, 39: 7224–7231

    Article  CAS  Google Scholar 

  30. Onitsuka K, Yamamoto M, Mori T, Takei F, Takahashi S. Organometallics, 2006, 25: 1270–1278

    Article  CAS  Google Scholar 

  31. Onitsuka K, Joh T, Takahashi S. Angew Chem Int Ed Engl, 1992, 31: 851–852

    Article  Google Scholar 

  32. Onitsuka K, Yanai K, Takei F, Joh T, Takahashi S. Organometallics, 1994, 13: 3862–3867

    Article  CAS  Google Scholar 

  33. Takei F, Yanai K, Onitsuka K, Takahashi S. Chem Eur J, 2000, 6: 983–993

    Article  CAS  PubMed  Google Scholar 

  34. Xue YX, Zhu YY, Gao LM, He XY, Liu N, Zhang WY, Yin J, Ding Y, Zhou H, Wu ZQ. J Am Chem Soc, 2014, 136: 4706–4713

    Article  CAS  PubMed  Google Scholar 

  35. Xue YX, Chen JL, Jiang ZQ, Yu Z, Liu N, Yin J, Zhu YY, Wu ZQ. Polym Chem, 2014, 5: 6435–6438

    Article  CAS  Google Scholar 

  36. Chen JL, Su M, Jiang ZQ, Liu N, Yin J, Zhu YY, Wu ZQ. Polym Chem, 2015, 6: 4784–4793

    Article  CAS  Google Scholar 

  37. Su M, Liu N, Wang Q, Wang H, Yin J, Wu ZQ. Macromolecules, 2016, 49: 110–119

    Article  CAS  Google Scholar 

  38. Chen Y, Zhang ZH, Han X, Yin J, Wu ZQ. Macromolecules, 2016, 49: 7718–7727

    Article  CAS  Google Scholar 

  39. Jiang ZQ, Xue YX, Chen JL, Yu ZP, Liu N, Yin J, Zhu YY, Wu ZQ. Macromolecules, 2015, 48: 81–89

    Article  CAS  Google Scholar 

  40. Liu C, Mi YX, Wang RH, Jiang ZQ, Zhang XY, Liu N, Yin J, Wu ZQ. Polym Chem, 2016, 7: 2447–2451

    Article  CAS  Google Scholar 

  41. He YG, Shi SY, Liu N, Ding YS, Yin J, Wu ZQ. Macromolecules, 2016, 49: 48–58

    Article  CAS  Google Scholar 

  42. Liu N, Ma CH, Sun RW, Huang J, Li C, Wu ZQ. Polym Chem, 2017, 8: 2152–2163

    Article  CAS  Google Scholar 

  43. Yang L, Tang Y, Liu N, Liu CH, Ding Y, Wu ZQ. Macromolecules, 2016, 49: 7692–7702

    Article  CAS  Google Scholar 

  44. Xiao Y, Wang HQ, Zhang H, Jiang ZQ, Wang YQ, Li H, Yin J, Zhu YY, Wu ZQ. J Polym Sci Part A-Polym Chem, 2017, 55: 2092–2103

    Article  CAS  Google Scholar 

  45. Huang T, Meng Y, Venkatraman S, Wang D, Li CJ. J Am Chem Soc, 2001, 123: 7451–7452

    Article  CAS  PubMed  Google Scholar 

  46. Kuniyasu H, Yamashita F, Terao J, Kambe N. Angew Chem Int Ed, 2007, 46: 5929–5933

    Article  CAS  Google Scholar 

  47. Plougastel L, Koniev O, Specklin S, Decuypere E, Créminon C, Buisson DA, Wagner A, Kolodych S, Taran F. Chem Commun, 2014, 50: 9376–9378

    Article  CAS  Google Scholar 

  48. Tao H, Liu F, Zeng R, Shao Z, Zou L, Cao Y, Murphy JM, Houk KN, Liang Y. Chem Commun, 2018, 54: 5082–5085

    Article  CAS  Google Scholar 

  49. Saegusa T, Kobayashi S, Yamada A. Makromol Chem, 1976, 177: 2271–2283

    Article  CAS  Google Scholar 

  50. Wang JS, Matyjaszewski K. Macromolecules, 1995, 28: 7901–7910

    Article  CAS  Google Scholar 

  51. Ando T, Kamigaito M, Sawamoto M. Macromolecules, 2000, 33: 2819–2824

    Article  CAS  Google Scholar 

  52. Lanzalaco S, Fantin M, Scialdone O, Galia A, Isse AA, Gennaro A, Matyjaszewski K. Macromolecules, 2017, 50: 192–202

    Article  CAS  Google Scholar 

  53. Matyjaszewski K, Wang JL, Grimaud T, Shipp DA. Macromolecules, 1998, 31: 1527–1534

    Article  Google Scholar 

  54. Pan X, Fang C, Fantin M, Malhotra N, So WY, Peteanu LA, Isse AA, Gennaro A, Liu P, Matyjaszewski K. J Am Chem Soc, 2016, 138: 2411–2425

    Article  CAS  PubMed  Google Scholar 

  55. Michalak A, Ziegler T. Organometallics, 2003, 22: 2069–2079

    Article  CAS  Google Scholar 

  56. del Rosal I, Brignou P, Guillaume SM, Carpentier JF, Maron L. Polym Chem, 2015, 6: 3336–3352

    Article  CAS  Google Scholar 

  57. Wei J, Riffel MN, Diaconescu PL. Macromolecules, 2017, 50: 1847–1861

    Article  CAS  Google Scholar 

  58. Ilker MF, Coughlin EB. Macromolecules, 2002, 35: 54–58

    Article  CAS  Google Scholar 

  59. Tan L, Parker KA, Sampson NS. Macromolecules, 2014, 47: 6572–6579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Geometries of minima and transition-state structures are optimized at the M06/6-31G(d)[SDD, for Pd and I] level. Solvent effects in THF were evaluated on the gas-phase optimized structures using the CPCM model at the M06/6-311+G(d,p)[SDD, for Pd and I] level. Computational details are provided in the Supporting Information online

  61. Appleton TG, Clark HC, Manzer LE. Coord Chem Rev, 1973, 10: 335–422

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21771049, 21622402), the Fundamental Research Funds for the Central Universities, the National Thousand Young Talents Program, the Jiangsu Specially-Appointed Professor Plan, and the Natural Science Foundation of Jiangsu Province (BK20170631).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyuan Zhu, Yong Liang or Zongquan Wu.

Electronic supplementary material

Supplementary material, approximately 1.57 MB.

11426_2018_9415_MOESM2_ESM.pdf

Halogen Effects on Phenylethynyl Palladium(II) Complexes for Living Polymerization of Isocyanides: A Combined Experimental and Computational Investigation

checkCIF/PLATON report

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, Y., Jiang, Z. et al. Halogen effects on phenylethynyl palladium(II) complexes for living polymerization of isocyanides: a combined experimental and computational investigation. Sci. China Chem. 62, 491–499 (2019). https://doi.org/10.1007/s11426-018-9415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9415-8

Keywords

Navigation