Science China Chemistry

, Volume 62, Issue 4, pp 491–499 | Cite as

Halogen effects on phenylethynyl palladium(II) complexes for living polymerization of isocyanides: a combined experimental and computational investigation

  • Yaqi Wang
  • Yu Chen
  • Zhiqiang Jiang
  • Fang Liu
  • Fang Liu
  • Yuanyuan ZhuEmail author
  • Yong LiangEmail author
  • Zongquan WuEmail author


Phenylethynyl palladium(II) complexes have proven to be effective catalysts for coordination polymerization of isocyanides. In this work, two new phenylethynyl palladium(II) initiators bearing bromide (1b) and iodide (1c) were synthesized and applied for living polymerization of aryl and alkyl isocyanides. The coordinated halogen anions can significantly influence the kinetics of polymerization, with the observed order of reaction rates being 1c (I)>1b (Br)>1a (Cl). Impressively, 1c not only accelerates the reaction rate in both the initiation stage and propagation stage, but also can polymerize less active monomers that cannot be reacted by 1a. DFT calculations were then employed to understand the detailed mechanism and the halogen effects in this insertion polymerization process.


polyisocyanide halogen effect living polymerization palladium complex DFT calculation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21771049, 21622402), the Fundamental Research Funds for the Central Universities, the National Thousand Young Talents Program, the Jiangsu Specially-Appointed Professor Plan, and the Natural Science Foundation of Jiangsu Province (BK20170631).

Supplementary material

11426_2018_9415_MOESM1_ESM.cif (1.6 mb)
Supplementary material, approximately 1.57 MB.
11426_2018_9415_MOESM2_ESM.pdf (1.9 mb)
Halogen Effects on Phenylethynyl Palladium(II) Complexes for Living Polymerization of Isocyanides: A Combined Experimental and Computational Investigation
11426_2018_9415_MOESM3_ESM.pdf (474 kb)
checkCIF/PLATON report


  1. 1.
    Nakano T, Okamoto Y. Chem Rev, 2001, 101: 4013–4038CrossRefGoogle Scholar
  2. 2.
    Cornelissen JJLM, Rowan AE, Nolte RJM, Sommerdijk NAJM. Chem Rev, 2001, 101: 4039–4070CrossRefGoogle Scholar
  3. 3.
    Elemans JAAW, Rowan AE, Nolte RJM. J Mater Chem, 2003, 13: 2661–2670CrossRefGoogle Scholar
  4. 4.
    de Witte PAJ, Castriciano M, Cornelissen JJLM, Monsù Scolaro L, Nolte RJM, Rowan AE. Chem Eur J, 2003, 9: 1775–1781CrossRefGoogle Scholar
  5. 5.
    Yashima E, Maeda K, Furusho Y. Acc Chem Res, 2008, 41: 1166–1180CrossRefGoogle Scholar
  6. 6.
    Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Chem Rev, 2009, 109: 6102–6211CrossRefGoogle Scholar
  7. 7.
    Le Gac S, Schwartz E, Koepf M, Cornelissen JJLM, Rowan AE, Nolte RJM. Chem Eur J, 2010, 16: 6176–6186CrossRefGoogle Scholar
  8. 8.
    Schwartz E, Koepf M, Kitto HJ, Nolte RJM, Rowan AE. Polym Chem, 2011, 2: 33–47CrossRefGoogle Scholar
  9. 9.
    Yamamoto T, Murakami R, Suginome M. J Am Chem Soc, 2017, 139: 2557–2560CrossRefGoogle Scholar
  10. 10.
    Nagata Y, Kuroda T, Takagi K, Suginome M. Chem Sci, 2014, 5: 4953–4956CrossRefGoogle Scholar
  11. 11.
    Miyabe T, Iida H, Ohnishi A, Yashima E. Chem Sci, 2012, 3: 863–867CrossRefGoogle Scholar
  12. 12.
    Foster S, Finlayson CE, Keivanidis PE, Huang YS, Hwang I, Friend RH, Otten MBJ, Lu LP, Schwartz E, Nolte RJM, Rowan AE. Macromolecules, 2009, 42: 2023–2030CrossRefGoogle Scholar
  13. 13.
    Miyabe T, Iida H, Banno M, Yamaguchi T, Yashima E. Macromolecules, 2011, 44: 8687–8692CrossRefGoogle Scholar
  14. 14.
    Hu G, Li W, Hu Y, Xu A, Yan J, Liu L, Zhang X, Liu K, Zhang A. Macromolecules, 2013, 46: 1124–1132CrossRefGoogle Scholar
  15. 15.
    Nishikawa T, Nagata Y, Suginome M. ACS Macro Lett, 2017, 6: 431–435CrossRefGoogle Scholar
  16. 16.
    van Buul AM, Schwartz E, Brocorens P, Koepf M, Beljonne D, Maan JC, Christianen PCM, Kouwer PHJ, Nolte RJM, Engelkamp H, Blank K, Rowan AE. Chem Sci, 2013, 4: 2357–2363CrossRefGoogle Scholar
  17. 17.
    Cahoon CR, Bielawski CW. Coord Chem Rev, 2018, 374: 261–278CrossRefGoogle Scholar
  18. 18.
    Drenth W, Nolte RJM. Acc Chem Res, 1979, 12: 30–35CrossRefGoogle Scholar
  19. 19.
    Kamer PCJ, Nolte RJM, Drenth W. J Am Chem Soc, 1988, 110: 6818–6825CrossRefGoogle Scholar
  20. 20.
    Deming TJ, Novak BM. Macromolecules, 1991, 24: 6043–6045CrossRefGoogle Scholar
  21. 21.
    Deming TJ, Novak BM. J Am Chem Soc, 1993, 115: 9101–9111CrossRefGoogle Scholar
  22. 22.
    Asaoka S, Joza A, Minagawa S, Song L, Suzuki Y, Iyoda T. ACS Macro Lett, 2013, 2: 906–911CrossRefGoogle Scholar
  23. 23.
    Wu ZQ, Ono RJ, Chen Z, Bielawski CW. J Am Chem Soc, 2010, 132: 14000–14001CrossRefGoogle Scholar
  24. 24.
    Wu ZQ, Radcliffe JD, Ono RJ, Chen Z, Li Z, Bielawski CW. Polym Chem, 2012, 3: 874–881CrossRefGoogle Scholar
  25. 25.
    Wu ZQ, Qi CG, Liu N, Wang Y, Yin J, Zhu YY, Qiu LZ, Lu HB. J Polym Sci Part A-Polym Chem, 2013, 51: 2939–2947CrossRefGoogle Scholar
  26. 26.
    Liu N, Qi CG, Wang Y, Liu DF, Yin J, Zhu YY, Wu ZQ. Macromolecules, 2013, 46: 7753–7758CrossRefGoogle Scholar
  27. 27.
    Wu ZQ, Liu DF, Wang Y, Liu N, Yin J, Zhu YY, Qiu LZ, Ding YS. Polym Chem, 2013, 4: 4588–4595CrossRefGoogle Scholar
  28. 28.
    Yu ZP, Liu N, Yang L, Jiang ZQ, Wu ZQ. Macromolecules, 2017, 50: 3204–3214CrossRefGoogle Scholar
  29. 29.
    Onitsuka K, Mori T, Yamamoto M, Takei F, Takahashi S. Macromolecules, 2006, 39: 7224–7231CrossRefGoogle Scholar
  30. 30.
    Onitsuka K, Yamamoto M, Mori T, Takei F, Takahashi S. Organometallics, 2006, 25: 1270–1278CrossRefGoogle Scholar
  31. 31.
    Onitsuka K, Joh T, Takahashi S. Angew Chem Int Ed Engl, 1992, 31: 851–852CrossRefGoogle Scholar
  32. 32.
    Onitsuka K, Yanai K, Takei F, Joh T, Takahashi S. Organometallics, 1994, 13: 3862–3867CrossRefGoogle Scholar
  33. 33.
    Takei F, Yanai K, Onitsuka K, Takahashi S. Chem Eur J, 2000, 6: 983–993CrossRefGoogle Scholar
  34. 34.
    Xue YX, Zhu YY, Gao LM, He XY, Liu N, Zhang WY, Yin J, Ding Y, Zhou H, Wu ZQ. J Am Chem Soc, 2014, 136: 4706–4713CrossRefGoogle Scholar
  35. 35.
    Xue YX, Chen JL, Jiang ZQ, Yu Z, Liu N, Yin J, Zhu YY, Wu ZQ. Polym Chem, 2014, 5: 6435–6438CrossRefGoogle Scholar
  36. 36.
    Chen JL, Su M, Jiang ZQ, Liu N, Yin J, Zhu YY, Wu ZQ. Polym Chem, 2015, 6: 4784–4793CrossRefGoogle Scholar
  37. 37.
    Su M, Liu N, Wang Q, Wang H, Yin J, Wu ZQ. Macromolecules, 2016, 49: 110–119CrossRefGoogle Scholar
  38. 38.
    Chen Y, Zhang ZH, Han X, Yin J, Wu ZQ. Macromolecules, 2016, 49: 7718–7727CrossRefGoogle Scholar
  39. 39.
    Jiang ZQ, Xue YX, Chen JL, Yu ZP, Liu N, Yin J, Zhu YY, Wu ZQ. Macromolecules, 2015, 48: 81–89CrossRefGoogle Scholar
  40. 40.
    Liu C, Mi YX, Wang RH, Jiang ZQ, Zhang XY, Liu N, Yin J, Wu ZQ. Polym Chem, 2016, 7: 2447–2451CrossRefGoogle Scholar
  41. 41.
    He YG, Shi SY, Liu N, Ding YS, Yin J, Wu ZQ. Macromolecules, 2016, 49: 48–58CrossRefGoogle Scholar
  42. 42.
    Liu N, Ma CH, Sun RW, Huang J, Li C, Wu ZQ. Polym Chem, 2017, 8: 2152–2163CrossRefGoogle Scholar
  43. 43.
    Yang L, Tang Y, Liu N, Liu CH, Ding Y, Wu ZQ. Macromolecules, 2016, 49: 7692–7702CrossRefGoogle Scholar
  44. 44.
    Xiao Y, Wang HQ, Zhang H, Jiang ZQ, Wang YQ, Li H, Yin J, Zhu YY, Wu ZQ. J Polym Sci Part A-Polym Chem, 2017, 55: 2092–2103CrossRefGoogle Scholar
  45. 45.
    Huang T, Meng Y, Venkatraman S, Wang D, Li CJ. J Am Chem Soc, 2001, 123: 7451–7452CrossRefGoogle Scholar
  46. 46.
    Kuniyasu H, Yamashita F, Terao J, Kambe N. Angew Chem Int Ed, 2007, 46: 5929–5933CrossRefGoogle Scholar
  47. 47.
    Plougastel L, Koniev O, Specklin S, Decuypere E, Créminon C, Buisson DA, Wagner A, Kolodych S, Taran F. Chem Commun, 2014, 50: 9376–9378CrossRefGoogle Scholar
  48. 48.
    Tao H, Liu F, Zeng R, Shao Z, Zou L, Cao Y, Murphy JM, Houk KN, Liang Y. Chem Commun, 2018, 54: 5082–5085CrossRefGoogle Scholar
  49. 49.
    Saegusa T, Kobayashi S, Yamada A. Makromol Chem, 1976, 177: 2271–2283CrossRefGoogle Scholar
  50. 50.
    Wang JS, Matyjaszewski K. Macromolecules, 1995, 28: 7901–7910CrossRefGoogle Scholar
  51. 51.
    Ando T, Kamigaito M, Sawamoto M. Macromolecules, 2000, 33: 2819–2824CrossRefGoogle Scholar
  52. 52.
    Lanzalaco S, Fantin M, Scialdone O, Galia A, Isse AA, Gennaro A, Matyjaszewski K. Macromolecules, 2017, 50: 192–202CrossRefGoogle Scholar
  53. 53.
    Matyjaszewski K, Wang JL, Grimaud T, Shipp DA. Macromolecules, 1998, 31: 1527–1534CrossRefGoogle Scholar
  54. 54.
    Pan X, Fang C, Fantin M, Malhotra N, So WY, Peteanu LA, Isse AA, Gennaro A, Liu P, Matyjaszewski K. J Am Chem Soc, 2016, 138: 2411–2425CrossRefGoogle Scholar
  55. 55.
    Michalak A, Ziegler T. Organometallics, 2003, 22: 2069–2079CrossRefGoogle Scholar
  56. 56.
    del Rosal I, Brignou P, Guillaume SM, Carpentier JF, Maron L. Polym Chem, 2015, 6: 3336–3352CrossRefGoogle Scholar
  57. 57.
    Wei J, Riffel MN, Diaconescu PL. Macromolecules, 2017, 50: 1847–1861CrossRefGoogle Scholar
  58. 58.
    Ilker MF, Coughlin EB. Macromolecules, 2002, 35: 54–58CrossRefGoogle Scholar
  59. 59.
    Tan L, Parker KA, Sampson NS. Macromolecules, 2014, 47: 6572–6579CrossRefGoogle Scholar
  60. 60.
    Geometries of minima and transition-state structures are optimized at the M06/6-31G(d)[SDD, for Pd and I] level. Solvent effects in THF were evaluated on the gas-phase optimized structures using the CPCM model at the M06/6-311+G(d,p)[SDD, for Pd and I] level. Computational details are provided in the Supporting Information onlineGoogle Scholar
  61. 61.
    Appleton TG, Clark HC, Manzer LE. Coord Chem Rev, 1973, 10: 335–422CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of TechnologyHefeiChina
  2. 2.State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina

Personalised recommendations