Advertisement

Science China Chemistry

, Volume 62, Issue 4, pp 475–478 | Cite as

Lewis acid/base modulation in β-diiminate zinc-catalyzed switchable ring-opening polymerization of rac-lactide

  • Pan Zhang
  • Minhui Zhao
  • Wenmin Pang
  • Changle ChenEmail author
Articles
  • 103 Downloads

Abstract

Two β-diiminate zinc complexes were prepared and found to show high activity and well-controlled catalytic behavior in the ring-opening polymerization of rac-lactide. Coordination of the Lewis acid to the zinc complexes completely terminated the polymerization. The coordinated Lewis acid was easily cleaved by using a Lewis base, so that the polymerization could resume. Thus, switchable polymerization could be realized by the subsequent addition of a Lewis acid and a Lewis base. This work provides a new strategy to control the ring-opening polymerization of rac-lactide.

Keywords

ring-opening polymerization β-diimine zinc catalysts modulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21871242, 21690071), and the Fundamental Research Funds for the Central Universities.

Supplementary material

11426_2018_9414_MOESM1_ESM.pdf (1.5 mb)
Supporting Information
11426_2018_9414_MOESM2_ESM.cif (29 kb)
Supplementary material, approximately 28.5 KB.
11426_2018_9414_MOESM3_ESM.cif (36 kb)
Supplementary material, approximately 36.4 KB.

References

  1. 1.
    Leibfarth FA, Mattson KM, Fors BP, Collins HA, Hawker CJ. Angew Chem Int Ed, 2013, 52: 199–210CrossRefGoogle Scholar
  2. 2.
    Teator AJ, Lastovickova DN, Bielawski CW. Chem Rev, 2016, 116: 1969–1992CrossRefGoogle Scholar
  3. 3.
    Chen C. ACS Catal, 2018, 8: 5506–5514CrossRefGoogle Scholar
  4. 4.
    Gregson CKA, Gibson VC, Long NJ, Marshall EL, Oxford PJ, White AJP. J Am Chem Soc, 2006, 128: 7410–7411CrossRefGoogle Scholar
  5. 5.
    Broderick EM, Guo N, Vogel CS, Xu C, Sutter J, Miller JT, Meyer K, Mehrkhodavandi P, Diaconescu PL. J Am Chem Soc, 2011, 133: 9278–9281CrossRefGoogle Scholar
  6. 6.
    Biernesser AB, Li B, Byers JA. J Am Chem Soc, 2013, 135: 16553–16560CrossRefGoogle Scholar
  7. 7.
    Wei J, Riffel MN, Diaconescu PL. Macromolecules, 2017, 50: 1847–1861CrossRefGoogle Scholar
  8. 8.
    Qi M, Dong Q, Wang D, Byers JA. J Am Chem Soc, 2018, 140: 5686–5690CrossRefGoogle Scholar
  9. 9.
    Chen M, Yang B, Chen C. Angew Chem Int Ed, 2015, 54: 15520–15524CrossRefGoogle Scholar
  10. 10.
    Chen M, Yang B, Chen C. Synlett, 2016, 27: 1297–1302CrossRefGoogle Scholar
  11. 11.
    Kaiser JM, Long BK. Coord Chem Rev, 2018, 372: 141–152CrossRefGoogle Scholar
  12. 12.
    Anderson Jr. WC, Rhinehart JL, Tennyson AG, Long BK. J Am Chem Soc, 2016, 138: 774–777CrossRefGoogle Scholar
  13. 13.
    Anderson Jr WC, Long BK. ACS Macro Lett, 2016, 5: 1029–1033CrossRefGoogle Scholar
  14. 14.
    Anderson WC, Park SH, Brown LA, Kaiser JM, Long BK. Inorg Chem Front, 2017, 4: 1108–1112CrossRefGoogle Scholar
  15. 15.
    Abubekerov M, Shepard SM, Diaconescu PL. Eur J Inorg Chem, 2016, 2016(15–16): 2634–2640CrossRefGoogle Scholar
  16. 16.
    Zhao M, Chen C. ACS Catal, 2017, 7: 7490–7494CrossRefGoogle Scholar
  17. 17.
    Zou W, Pang W, Chen C. Inorg Chem Front, 2017, 4: 795–800CrossRefGoogle Scholar
  18. 18.
    Chen C. Nat Rev Chem, 2018, 2: 6–14CrossRefGoogle Scholar
  19. 19.
    Chen M, Chen C. Angew Chem Int Ed, 2018, 57: 3094–3098CrossRefGoogle Scholar
  20. 20.
    Zhang D, Chen C. Angew Chem Int Ed, 2017, 56: 14672–14676CrossRefGoogle Scholar
  21. 21.
    Li M, Wang X, Luo Y, Chen C. Angew Chem Int Ed, 2017, 56: 11604–11609CrossRefGoogle Scholar
  22. 22.
    Liu D, Yao C, Wang R, Wang M, Wang Z, Wu C, Lin F, Li S, Wan X, Cui D. Angew Chem Int Ed, 2015, 54: 5205–5209CrossRefGoogle Scholar
  23. 23.
    Leicht H, Göttker-Schnetmann I, Mecking S. J Am Chem Soc, 2017, 139: 6823–6826CrossRefGoogle Scholar
  24. 24.
    Wang C, Luo G, Nishiura M, Song G, Yamamoto A, Luo Y, Hou Z. Sci Adv, 2017, 3: e1701011CrossRefGoogle Scholar
  25. 25.
    Liu B, Cui D, Tang T. Angew Chem Int Ed, 2016, 55: 11975–11978CrossRefGoogle Scholar
  26. 26.
    Gao J, Yang B, Chen C. J Catal, 2019, 369: 233–238CrossRefGoogle Scholar
  27. 27.
    Na Y, Dai S, Chen C. Macromolecules, 2018, 51: 4040–4048CrossRefGoogle Scholar
  28. 28.
    Zhou S, Chen C. Sci Bull, 2018, 63: 441–445CrossRefGoogle Scholar
  29. 29.
    Zou C, Pang W, Chen C. Sci China Chem, 2018, 61: 1175–1178CrossRefGoogle Scholar
  30. 30.
    Guo L, Chen C. Sci China Chem, 2015, 58: 1663–1673CrossRefGoogle Scholar
  31. 31.
    Chen M, Zou W, Cai Z, Chen C. Polym Chem, 2015, 6: 2669–2676CrossRefGoogle Scholar
  32. 32.
    Cai Z, Shen Z, Zhou X, Jordan RF. ACS Catal, 2012, 2: 1187–1195CrossRefGoogle Scholar
  33. 33.
    Boardman BM, Bazan GC. Acc Chem Res, 2009, 42: 1597–1606CrossRefGoogle Scholar
  34. 34.
    Maity A, Teets TS. Chem Rev, 2016, 116: 8873–8911CrossRefGoogle Scholar
  35. 35.
    Cheng M, Attygalle AB, Lobkovsky EB, Coates GW. J Am Chem Soc, 1999, 121: 11583–11584CrossRefGoogle Scholar
  36. 36.
    Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW. J Am Chem Soc, 2001, 123: 3229–3238CrossRefGoogle Scholar
  37. 37.
    Cheng M, Moore DR, Reczek JJ, Chamberlain BM, Lobkovsky EB, Coates GW. J Am Chem Soc, 2001, 123: 8738–8749CrossRefGoogle Scholar
  38. 38.
    Allen SD, Moore DR, Lobkovsky EB, Coates GW. J Organomet Chem, 2003, 683: 137–148CrossRefGoogle Scholar
  39. 39.
    Tong R, Cheng J. Macromolecules, 2012, 45: 2225–2232CrossRefGoogle Scholar
  40. 40.
    Doyle DJ, Hitchcock PB, Lappert MF, Li G. J Organomet Chem, 2009, 694: 2611–2617CrossRefGoogle Scholar
  41. 41.
    Kim Y, Verkade JG. Macromol Rapid Commun, 2002, 23: 917–921CrossRefGoogle Scholar
  42. 42.
    Save M, Schappacher M, Soum A. Macromol Chem Phys, 2002, 203: 889–899CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pan Zhang
    • 1
  • Minhui Zhao
    • 1
  • Wenmin Pang
    • 1
  • Changle Chen
    • 1
    Email author
  1. 1.Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations