Skip to main content
Log in

Coronarenes: recent advances and perspectives on macrocyclic and supramolecular chemistry

  • Invited Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Synthetic macrocyclic host molecules always play an essential role in the establishment and development of supramolecular chemistry. Along with the continuous interests in the study of classical macrocycles, recent decades have witnessed the emergence and rapid development of the chemistry and supramolecular chemistry of novel and functional macrocycles. Owing to their easy availability, a self-tunable V-shaped cavity resulted from 1,3-alternate conformation, and diversified electronic features steered by the interplay between heteroatom linkages and aromatic rings, heteracalixaromatics act as a type of versatile and powerful macrocyclic hosts in molecular recognition and fabrication of supramolecular systems. Very recently, by means of engineering the bond connectivity or the recombination of chemical bonds within heteracalixaromatics, we have devised coronarenes, a new generation of macrocycles. In this concise review, macrocyclic and supramolecular chemistry of coronarenes are summarized in the order of their syntheses, structural features, molecular recognition and self-assembly properties. In the last part of this article, personal perspectives on the study of macrocyclic and supramolecular chemistry will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. (a) Lehn J-M, Atwood JL, Davies JED, MacNicol DD, Vögtle F. Comprehensive Supramolecular Chemistry. Oxford: Pergamon, 1996

    Google Scholar 

  2. Liu Z, Nalluri SKM, Stoddart JF. Chem Soc Rev, 2017, 46: 2459–2478

    Article  CAS  PubMed  Google Scholar 

  3. Wang MX, Zhang XH, Zheng QY. Angew Chem Int Ed, 2004, 43: 838–842

    Article  CAS  Google Scholar 

  4. Wang MX, Yang HB. J Am Chem Soc, 2004, 126: 15412–15422

    Article  CAS  PubMed  Google Scholar 

  5. Wang MX. Chem Commun, 2008, 27: 4541

    Article  CAS  Google Scholar 

  6. Wang MX. Acc Chem Res, 2012, 45: 182–195

    Article  CAS  Google Scholar 

  7. Maes W, Dehaen W. Chem Soc Rev, 2008, 37: 2393

    Article  CAS  PubMed  Google Scholar 

  8. Tsue H, Ishibashi K, Tamura R. Azacalixarene: A new class in the calixarene family. In: Topics in Heterocyclic Chemistry. Heidelberg: Springer, 2008. 73–96

    Google Scholar 

  9. Morohashi N, Narumi F, Iki N, Hattori T, Miyano S. Chem Rev, 2006, 106: 5291–5316

    Article  CAS  PubMed  Google Scholar 

  10. (a)Neri P, Sessler JL, Wang M-X. Calixarenes and Beyond. Heidelberg: Springer, 2016

    Google Scholar 

  11. Xu R, Hou B, Wang D, Wang M. Sci China Chem, 2016, 59: 1306–1310

    Article  CAS  Google Scholar 

  12. Li JT, Wang LX, Wang DX, Zhao L, Wang MX. J Org Chem, 2014, 79: 2178–2188

    Article  CAS  PubMed  Google Scholar 

  13. Yao B, Wang DX, Huang ZT, Wang MX. Chem Commun, 2009, 2899

  14. Zhang H, Yao B, Zhao L, Wang DX, Xu BQ, Wang MX. J Am Chem Soc, 2014, 136: 6326–6332

    Article  CAS  PubMed  Google Scholar 

  15. Wang F, Zhao L, You J, Wang MX. Org Chem Front, 2016, 3: 880–886

    Article  CAS  Google Scholar 

  16. Zhang Q, Wang MX. Org Chem Front, 2017, 4: 283–287

    Article  CAS  Google Scholar 

  17. Zhang Q, Liu Y, Wang T, Zhang X, Long C, Wu YD, Wang MX. J Am Chem Soc, 2018, 140: 5579–5587

    Article  CAS  PubMed  Google Scholar 

  18. Guo QH, Fu ZD, Zhao L, Wang MX. Angew Chem Int Ed, 2014, 53: 13548–13552

    Article  CAS  Google Scholar 

  19. Guo QH, Zhao L, Wang MX. Chem Eur J, 2016, 22: 6947–6955

    Article  CAS  PubMed  Google Scholar 

  20. Clavier G, Audebert P. Chem Rev, 2010, 110: 3299–3314

    Article  CAS  PubMed  Google Scholar 

  21. Lu Y, Fu ZD, Guo QH, Wang MX. Org Lett, 2017, 19: 1590–1593

    Article  CAS  PubMed  Google Scholar 

  22. Fu ZD, Guo QH, Zhao L, Wang DX, Wang MX. Org Lett, 2016, 18: 2668–2671

    Article  CAS  PubMed  Google Scholar 

  23. Wu ZC, Guo QH, Wang MX. Angew Chem Int Ed, 2017, 56: 7151–7155

    Article  CAS  Google Scholar 

  24. Zhao MY, Wang DX, Wang MX. J Org Chem, 2018, 83: 1502–1509

    Article  CAS  PubMed  Google Scholar 

  25. Ren WS, Zhao L, Wang MX. Org Lett, 2016, 18: 3126–3129

    Article  CAS  PubMed  Google Scholar 

  26. Ren WS, Wang MX. Supramol Chem, 2018, 30: 583–588

    Article  CAS  Google Scholar 

  27. Lu Y, Liang DD, Fu ZD, Guo QH, Wang MX. Chin J Chem, 2018, 36: 630–634

    Article  CAS  Google Scholar 

  28. Guo QH, Zhao L, Wang MX. Angew Chem Int Ed, 2015, 54: 8386–8389

    Article  CAS  Google Scholar 

  29. Garau C, Quiñonero D, Frontera A, Costa A, Ballester P, Deyà PM. Chem Phys Lett, 2003, 370: 7–13

    Article  CAS  Google Scholar 

  30. Gallivan JP, Dougherty DA. Org Lett, 1999, 1: 103–106

    Article  CAS  PubMed  Google Scholar 

  31. Alkorta I, Rozas I, Elguero J. J Org Chem, 1997, 62: 4687–4691

    Article  CAS  Google Scholar 

  32. Zeng L, Guo QH, Feng Y, Xu JF, Wei Y, Li Z, Wang MX, Zhang X. Langmuir, 2017, 33: 5829–5834

    Article  CAS  PubMed  Google Scholar 

  33. Zhao MY, Guo QH, Wang MX. Org Chem Front, 2018, 5: 760–764

    Article  CAS  Google Scholar 

  34. (a) Liu SQ, Wang DX, Zheng QY, Wang MX. Chem Commun, 2007, 3856

  35. Zhang EX, Wang DX, Zheng QY, Wang MX. Org Lett, 2008, 10: 2565–2568

    Article  CAS  PubMed  Google Scholar 

  36. Wang LX, Zhao L, Wang DX, Wang MX. Chem Commun, 2011, 47: 9690

    Article  CAS  Google Scholar 

  37. Fa SX, Wang LX, Wang DX, Zhao L, Wang MX. J Org Chem, 2014, 79: 3559–3571

    Article  CAS  PubMed  Google Scholar 

  38. Wang MX. Supramol Chem, 2016, 28: 1–3

    Article  CAS  Google Scholar 

  39. Pedersen CJ. Angew Chem Int Ed Engl, 1988, 27: 1021–1027

    Article  Google Scholar 

  40. Lehn JM. Angew Chem Int Ed Engl, 1988, 27: 89–112

    Article  Google Scholar 

  41. Cram DJ. Angew Chem Int Ed Engl, 1988, 27: 1009–1020

    Article  Google Scholar 

  42. Easton CJ, Lincoln SF. Modified Cyclodextrins—Scaffolds and Templates for Supramolecular Chemistry. London: Imperial College Press, 1999

    Book  Google Scholar 

  43. (a) Gutsche CD. Calixarenes Revisited. Cambridge: Royal Society of Chemistry, 1998

    Google Scholar 

  44. Rebek J. Angew Chem Int Ed, 2005, 44: 2068–2078

    Article  CAS  Google Scholar 

  45. (a) Kim K, Selvapalam N, Ko YH, Park KM, Kim D, Kim J. Chem Soc Rev, 2007, 36: 267–279

    Article  Google Scholar 

  46. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew Chem Int Ed, 2005, 44: 4844–4870

    Article  CAS  Google Scholar 

  47. Assaf KI, Nau WM. Chem Soc Rev, 2015, 44: 394–418

    Article  CAS  PubMed  Google Scholar 

  48. Gale PA, Anzenbacher Jr. P, Sessler JL. Coordin Chem Rev, 2001, 222: 57–102

    Article  CAS  Google Scholar 

  49. (a) Sisto T, Jasti R. Synlett, 2012, 23: 483–489

    Article  CAS  Google Scholar 

  50. Omachi H, Segawa Y, Itami K. Acc Chem Res, 2012, 45: 1378–1389

    Article  CAS  PubMed  Google Scholar 

  51. Yamago S, Kayahara E, Iwamoto T. Chem Record, 2014, 14: 84–100

    Article  CAS  Google Scholar 

  52. Golder MR, Jasti R. Acc Chem Res, 2015, 48: 557–566

    Article  CAS  PubMed  Google Scholar 

  53. Lewis SE. Chem Soc Rev, 2015, 44: 2221–2304

    Article  CAS  PubMed  Google Scholar 

  54. Ogoshi T. Pillararenes. Cambridge: Royal Society of Chemistry, 2015

    Book  Google Scholar 

  55. (a) Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science, 2017, 356: 172–175

    Article  CAS  PubMed  Google Scholar 

  56. Lewis SE. Chem Soc Rev, 2015, 44: 2221–2304

    Article  CAS  PubMed  Google Scholar 

  57. (a) Gong HY, Rambo BM, Karnas E, Lynch VM, Sessler JL. Nat Chem, 2010, 2: 406–409

    Article  CAS  PubMed  Google Scholar 

  58. Rambo BM, Gong HY, Oh M, Sessler JL. Acc Chem Res, 2012, 45: 1390–1401

    Article  CAS  PubMed  Google Scholar 

  59. Lee S, Chen CH, Flood AH. Nat Chem, 2013, 5: 704–710

    Article  CAS  PubMed  Google Scholar 

  60. Zhang GW, Li PF, Meng Z, Wang HX, Han Y, Chen CF. Angew Chem Int Ed, 2016, 55: 5304–5308

    Article  CAS  Google Scholar 

  61. (a) Jia F, He Z, Yang LP, Pan ZS, Yi M, Jiang RW, Jiang W. Chem Sci, 2015, 6: 6731–6738

    Article  CAS  PubMed  Google Scholar 

  62. Huang GB, Wang SH, Ke H, Yang LP, Jiang W. J Am Chem Soc, 2016, 138: 14550–14553

    Article  CAS  PubMed  Google Scholar 

  63. Shorthill BJ, Avetta CT, Glass TE. J Am Chem Soc, 2004, 126: 12732–12733

    Article  CAS  PubMed  Google Scholar 

  64. Chen H, Fan J, Hu X, Ma J, Wang S, Li J, Yu Y, Jia X, Li C. Chem Sci, 2015, 6: 197–202

    Article  CAS  PubMed  Google Scholar 

  65. (a) Mascal M, Armstrong A, Bartberger MD. J Am Chem Soc, 2002, 124: 6274–6276

    Article  CAS  PubMed  Google Scholar 

  66. Quiñonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deyà PM. Angew Chem Int Ed, 2002, 41: 3389–3392

    Article  Google Scholar 

  67. Alkorta I, Rozas I, Elguero J. J Am Chem Soc, 2002, 124: 8593–8598

    Article  CAS  PubMed  Google Scholar 

  68. (a) Wang DX, Zheng QY, Wang QQ, Wang MX. Angew Chem Int Ed, 2008, 47: 7485–7488

    Article  CAS  Google Scholar 

  69. Wang DX, Wang QQ, Han Y, Wang Y, Huang ZT, Wang MX. Chem Eur J, 2010, 16: 13053–13057

    Article  CAS  PubMed  Google Scholar 

  70. Wang DX, Wang MX. J Am Chem Soc, 2013, 135: 892–897

    Article  CAS  PubMed  Google Scholar 

  71. Zhang J, Zhou B, Sun ZR, Wang XB. Phys Chem Chem Phys, 2015, 17: 3131–3141

    Article  CAS  PubMed  Google Scholar 

  72. (a) Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J. Angew Chem Int Ed, 2011, 50: 9564–9583

    Article  CAS  Google Scholar 

  73. Wang DX, Wang MX. Chimia (aarau), 2011, 65: 939–943

    Article  CAS  Google Scholar 

  74. Ballester P. Acc Chem Res, 2013, 46: 874–884

    Article  CAS  PubMed  Google Scholar 

  75. Vargas Jentzsch A, Hennig A, Mareda J, Matile S. Acc Chem Res, 2013, 46: 2791–2800

    Article  CAS  PubMed  Google Scholar 

  76. Kan X, Liu H, Pan Q, Li Z, Zhao Y. Chin Chem Lett, 2018, 29: 261–266

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21732004, 21421064, 91427301, 21132005) and Tsinghua University. I am indebted to talented research students and postdoctoral fellows, whose names can be found in references, for their great contributions to the project of macrocyclic and supramolecular chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Xiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MX. Coronarenes: recent advances and perspectives on macrocyclic and supramolecular chemistry. Sci. China Chem. 61, 993–1003 (2018). https://doi.org/10.1007/s11426-018-9328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9328-8

Keywords

Navigation