Skip to main content
Log in

Design of Pd{111}-TiO2 interface for enhanced catalytic efficiency towards formic acid decomposition

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Supports are commonly implemented in the industrial application of heterogeneous catalysts to improve the stability and recyclability of catalysts. The supported catalysts often show the enhanced activity and selectivity in various catalytic reactions. However, the specific contributions of electronic and steric effects to a catalytic system often remain elusive due to the lack of well-defined model systems. In this work, two types of uniform Pd nanocrystals covered by {111} facets in tetrahedral and octahedral shapes, respectively, are synthesized with identical chemical environment and loaded on TiO2 supports to form hybrid structures (Pd{111}-TiO2) towards the application of formic acid decomposition. Our observation suggests that the polarization effect at the interface of Pd-TiO2 enhances its activity in formic acid decomposition. Moreover, the Pd tetrahedrons-TiO2 hybrid structure whose Pd{111}-TiO2 interface possesses a larger angle shows higher catalytic activity, owing to the reduced steric effect as compared to Pd octahedrons-TiO2. This study reveals the nature of interface effects in formic acid decomposition, and provides a guidance for the related catalyst design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhang H, Wang C, Sun HL, Fu G, Chen S, Zhang YJ, Chen BH, Anema JR, Yang ZL, Li JF, Tian ZQ. Nat Commun, 2017, 8: 15447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yu C, Guo X, Xi Z, Muzzio M, Yin Z, Shen B, Li J, Seto CT, Sun S. J Am Chem Soc, 2017, 139: 5712–5715

    Article  CAS  PubMed  Google Scholar 

  3. Cai Y, Liu C, Zhuo O, Wu Q, Yang L, Chen Q, Wang X, Hu Z. Acta Chim Sin, 2017, 75: 686–691

    Article  CAS  Google Scholar 

  4. Meng C, Wang H, Wu Y, Fu X, Yuan R. Acta Chim Sin, 2017, 75: 508–513

    Article  CAS  Google Scholar 

  5. Long R, Wu D, Li Y, Bai Y, Wang C, Song L, Xiong Y. Nano Res, 2015, 8: 2115–2123

    Article  CAS  Google Scholar 

  6. Cai YY, Li XH, Zhang YN, Wei X, Wang KX, Chen JS. Angew Chem Int Ed, 2013, 52: 11822–11825

    Article  CAS  Google Scholar 

  7. Zhou X, Huang Y, Xing W, Liu C, Liao J, Lu T. Chem Commun, 2008, 404: 3540–3542

    Article  CAS  Google Scholar 

  8. Ma Y, Xu Q, Zong X, Wang D, Wu G, Wang X, Li C. Energy Environ Sci, 2012, 5: 6345–6351

    Article  CAS  Google Scholar 

  9. Baffou G, Quidant R. Chem Soc Rev, 2014, 43: 3898–3907

    Article  CAS  PubMed  Google Scholar 

  10. Bai Y, Zhang W, Zhang Z, Zhou J, Wang X, Wang C, Huang W, Jiang J, Xiong Y. J Am Chem Soc, 2014, 136: 14650–14653

    Article  CAS  PubMed  Google Scholar 

  11. Enthaler S, von Langermann J, Schmidt T. Energy Environ Sci, 2010, 3: 1207

    Article  CAS  Google Scholar 

  12. Hull JF, Himeda Y, Wang WH, Hashiguchi B, Periana R, Szalda DJ, Muckerman JT, Fujita E. Nat Chem, 2012, 4: 383–388

    Article  CAS  PubMed  Google Scholar 

  13. Preti D, Resta C, Squarcialupi S, Fachinetti G. Angew Chem Int Ed, 2011, 50: 12551–12554

    Article  CAS  Google Scholar 

  14. Tsai JC, Nicholas KM. J Am Chem Soc, 1992, 114: 5117–5124

    Article  CAS  Google Scholar 

  15. Thampi KR, Kiwi J, Grätzel M. Nature, 1987, 327: 506–508

    Article  CAS  Google Scholar 

  16. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE. Nat Nanotech, 2011, 6: 302–307

    Article  CAS  Google Scholar 

  17. Luo Q, Feng G, Beller M, Jiao H. J Phys Chem C, 2012, 116: 4149–4156

    Article  CAS  Google Scholar 

  18. Boddien A, Loges B, Gartner F, Torborg C, Fumino K, Junge H, Ludwig R, Beller M. J Am Chem Soc, 2010, 132: 8924–8934

    Article  CAS  PubMed  Google Scholar 

  19. Fukuzumi S, Kobayashi T, Suenobu T. J Am Chem Soc, 2010, 132: 1496–1497

    Article  CAS  PubMed  Google Scholar 

  20. Jiang K, Xu K, Zou S, Cai WB. J Am Chem Soc, 2014, 136: 4861–4864

    Article  CAS  PubMed  Google Scholar 

  21. Parravano G. J Am Chem Soc, 1950, 72: 5546–5549

    Article  CAS  Google Scholar 

  22. Long R, Mao K, Gong M, Zhou S, Hu J, Zhi M, You Y, Bai S, Jiang J, Zhang Q, Wu X, Xiong Y. Angew Chem Int Ed, 2014, 53: 3205–3209

    Article  CAS  Google Scholar 

  23. Van Hardeveld R, Hartog F. Surf Sci, 1969, 15: 189–230

    Article  Google Scholar 

  24. Yang L, Cheng G, Guo Y, Li D, Xia L, Liu H. Nanoscale, 2018, 10: 11992–11996

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key R&D Program of China (2017YFA0207301), the National Natural Science Foundation of China (21725102, 21471141, U1532135, 21601173), CAS Key Research Program of Frontier Sciences (QYZDB-SSW-SLH018), CAS Interdisciplinary Innovation Team, Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2016FXCX003), Anhui Provincial Natural Science Foundation (1608085QB24), and Chinese Universities Scientific Fund (WK2310000067). We thank the support from USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ran Long or Yujie Xiong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Y., Huang, H., Xia, S. et al. Design of Pd{111}-TiO2 interface for enhanced catalytic efficiency towards formic acid decomposition. Sci. China Chem. 61, 1123–1127 (2018). https://doi.org/10.1007/s11426-018-9322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9322-9

Keywords

Navigation