Skip to main content
Log in

Controlling the solid-state luminescence of gold(I) N-heterocyclic carbene complexes through changes in the structure of molecular aggregates

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Thermally stable, solid-state luminescent organic materials are highly desired for the development of practical applications. Herein we synthesized new gold(I) complexes with N-heterocyclic carbene ligands, which have the ability to form strong metal-organic bond. Consequently, their thermochemical stability is enhanced at temperatures around 300 °C. Precise design of the molecular structure of the ligands, with a focus on ensuring low steric hindrance around Au atoms in order to limit disturbances to Au/Au interactions, provided a complex with a densely packed crystal with a shorter intermolecular Au–Au distance (3.17 Å) than the typical distance. In the solid state, this complex exhibited strong aurophilic interactions, which generated intense phosphorescence even in air at room temperature (quantum yield=16%) in spite of absence of any phosphorescence in solution. This behavior is characteristic for solid-state luminescence referred to as aggregation-controlled emission. Furthermore, the gold (I) complex displays capacity for mechano- and vapo-chromism—that is, the ability to change color reversibly in response to the application of external stimuli. We believe that the proposed design framework, which involves controlling thermal stability and luminescence property separately, provides a new opportunity for the development of practical applications using solid-state luminescent organic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shizu K, Lee J, Tanaka H, Nomura H, Yasuda T, Kaji H, Adachi C. Pure Appl Chem, 2015, 87: 627–638

    Article  CAS  Google Scholar 

  2. Ghosh B, Shirahata N. Sci Tech Adv Mater, 2014, 15: 014207

    Article  CAS  Google Scholar 

  3. Ronda CR. Emission and excitation mechanisms of phosphors. In: Ronda CR, Ed. Luminescence: From Theory to Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. 1–34

    Google Scholar 

  4. Birks JB. Photophysics of Aromatic Molecules. London: Wiley-Intersience, 1970

    Google Scholar 

  5. Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 1740–1741

    Google Scholar 

  6. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    Article  CAS  PubMed  Google Scholar 

  7. Leung KH, Phillips DL, Tse MC, Che CM, Miskowski VM. J Am Chem Soc, 1999, 121: 4799–4803

    Article  CAS  Google Scholar 

  8. Yam VWW, Au VKM, Leung SYL. Chem Rev, 2015, 115: 7589–7728

    Article  CAS  PubMed  Google Scholar 

  9. Schmidbaur H. Gold Bull, 2000, 33: 3–10

    Article  CAS  Google Scholar 

  10. Schmidbaur H, Schier A. Chem Soc Rev, 2012, 41: 370–412

    Article  CAS  PubMed  Google Scholar 

  11. López-de-Luzuriaga JM. Luminescence of Supramolecular Goldcontaining Materials. In: Laguna A, Ed. Modern Supramolecular Gold Chemistry. Weinheim: Wiley-VCH, 2008. 347–402

    Chapter  Google Scholar 

  12. Seki T, Ozaki T, Okura T, Asakura K, Sakon A, Uekusa H, Ito H. Chem Sci, 2015, 6: 2187–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seki T, Sakurada K, Muromoto M, Ito H. Chem Sci, 2015, 6: 1491–1497

    Article  CAS  PubMed  Google Scholar 

  14. Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T. Nat Commun, 2013, 4: 2009

    Article  CAS  PubMed  Google Scholar 

  15. Seki T, Sakurada K, Ito H. Angew Chem Int Ed, 2013, 52: 12828–12832

    Article  CAS  Google Scholar 

  16. Yamada S, Yamaguchi S, Tsutsumi O. J Mater Chem C, 2017, 5: 7977–7984

    Article  CAS  Google Scholar 

  17. Younis O, Rokusha Y, Sugimoto N, Fujisawa K, Yamada S, Tsutsumi O. Mol Crysts Liquid Crysts, 2015, 617: 21–31

    Article  CAS  Google Scholar 

  18. Fujisawa K, Okuda Y, Izumi Y, Nagamatsu A, Rokusha Y, Sadaike Y, Tsutsumi O. J Mater Chem C, 2014, 2: 3549–3555

    Article  CAS  Google Scholar 

  19. Fujisawa K, Kawakami N, Onishi Y, Izumi Y, Tamai S, Sugimoto N, Tsutsumi O. J Mater Chem C, 2013, 1: 5359–5366

    Article  CAS  Google Scholar 

  20. McDougald Jr. RN, Chilukuri B, Jia H, Perez MR, Rabaâ H, Wang X, Nesterov VN, Cundari TR, Gnade BE, Omary MA. Inorg Chem, 2014, 53: 7485–7499

    Article  CAS  PubMed  Google Scholar 

  21. Earl LD, Nagle JK, Wolf MO. Inorg Chem, 2014, 53: 7106–7117

    Article  CAS  PubMed  Google Scholar 

  22. Arvapally RK, Sinha P, Hettiarachchi SR, Coker NL, Bedel CE, Patterson HH, Elder RC, Wilson AK, Omary MA. J Phys Chem C, 2007, 111: 10689–10699

    Article  CAS  Google Scholar 

  23. White-Morris RL, Olmstead MM, Attar S, Balch AL. Inorg Chem, 2005, 44: 5021–5029

    Article  CAS  PubMed  Google Scholar 

  24. Seki T, Sakurada K, Ito H. Chem Commun, 2015, 51: 13933–13936

    Article  CAS  Google Scholar 

  25. Seki T, Kobayashi K, Ito H. Chem Commun, 2017, 53: 6700–6703

    Article  CAS  Google Scholar 

  26. Fujisawa K, Yamada S, Yanagi Y, Yoshioka Y, Kiyohara A, Tsutsumi O. Sci Rep, 2015, 5: 7934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kawano R, Younis O, Ando A, Rokusha Y, Yamada S, Tsutsumi O. Chem Lett, 2016, 45: 66–68

    Article  CAS  Google Scholar 

  28. Yamada S, Rokusha Y, Kawano R, Fujisawa K, Tsutsumi O. Faraday Discuss, 2017, 196: 269–283

    Article  CAS  PubMed  Google Scholar 

  29. Díez-González S, Ed. N–Heterocyclic Carbenes From Laboratory Curiosities to Efficient Synthetic Tools. London: RSC Publishing, 2010

  30. Ong CW, Liao SC, Chang TH, Hsu HF. J Org Chem, 2004, 69: 3181–3185

    Article  CAS  PubMed  Google Scholar 

  31. Wang HMJ, Chen CYL, Lin IJB. Organometallics, 1999, 18: 1216–1223

    Article  CAS  Google Scholar 

  32. Sheldrick GM. SHELXS-2014, Program for Crystal Structure Solution. Göttingen: University of Göttingen, 2014

    Google Scholar 

  33. Sheldrick GM. Acta Crystlogr A Found Crystlogr, 2008, 64: 112–122

    Article  CAS  Google Scholar 

  34. Balch AL, Olmstead MM, Vickery JC. Inorg Chem, 1999, 38: 3494–3499

    Article  CAS  PubMed  Google Scholar 

  35. Tiekink ERT, Kang JG. Coordin Chem Rev, 2009, 253: 1627–1648

    Article  CAS  Google Scholar 

  36. Koshevoy IO, Sminova ES, Hauka M, Laguna A, Chueca JC, Pakkanen TA, Tunik SP, Ospino I, Crespo O. Dalton Trans, 2011, 40: 7412–7422

    Article  CAS  PubMed  Google Scholar 

  37. Wang HMJ, Vasam CS, Tsai TYR, Chen SH, Chang AHH, Lin IJB. Organometallics, 2005, 24: 486–493

    Article  CAS  Google Scholar 

  38. Ray L, Shaikh MM, Ghosh P. Inorg Chem, 2008, 47: 230–240

    Article  CAS  PubMed  Google Scholar 

  39. Samantaray MK, Pang K, Shaikh MM, Ghosh P. Inorg Chem, 2008, 47: 4153–4165

    Article  CAS  PubMed  Google Scholar 

  40. Yuan WZ, Zhang Y, Tang BZ. Crystallization-induced phosphorescence for purely organic phosphors at room temperature and liquid crystals with aggregation-induced emission characteristics. In: Tang BZ, Qin A, Eds. Aggregation-Induced Emission: Applications. Hoboken: John Wiley & Sons, Ltd, 2013. 43–60

    Chapter  Google Scholar 

  41. Yuan WZ, Shen XY, Zhao H, Lam JWY, Tang L, Lu P, Wang C, Liu Y, Wang Z, Zheng Q, Sun JZ, Ma Y, Tang BZ. J Phys Chem C, 2010, 114: 6090–6099

    Article  CAS  Google Scholar 

  42. Gong Y, Chen G, Peng Q, Yuan WZ, Xie Y, Li S, Zhang Y, Tang BZ. Adv Mater, 2015, 27: 6195–6201

    Article  CAS  PubMed  Google Scholar 

  43. Xue P, Ding J, Wang P, Lu R. J Mater Chem C, 2016, 4: 6688–6706

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the JSPS KAKENSHI (18K05265), JST Matching Planner Program (VP29117941122), JICA Collaboration Kick-starter Program (RU and IITH), and the Cooperative Research Program of the Network Joint Research Center for Materials and Devices (Tokyo Institute of Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Tsutsumi.

Electronic supplementary material

11426_2018_9318_MOESM1_ESM.pdf

Controlling the Solid-State Luminescence of Gold(I) N-Heterocyclic Carbene Complexes through Changes in the Structure of Molecular Aggregates

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathyanarayana, A., Nakamura, Sy., Hisano, K. et al. Controlling the solid-state luminescence of gold(I) N-heterocyclic carbene complexes through changes in the structure of molecular aggregates. Sci. China Chem. 61, 957–965 (2018). https://doi.org/10.1007/s11426-018-9318-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9318-9

Keywords

Navigation